首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7974篇
  免费   500篇
  国内免费   286篇
  2023年   146篇
  2022年   189篇
  2021年   246篇
  2020年   242篇
  2019年   336篇
  2018年   327篇
  2017年   224篇
  2016年   217篇
  2015年   266篇
  2014年   476篇
  2013年   613篇
  2012年   364篇
  2011年   463篇
  2010年   346篇
  2009年   369篇
  2008年   371篇
  2007年   375篇
  2006年   336篇
  2005年   320篇
  2004年   307篇
  2003年   247篇
  2002年   226篇
  2001年   138篇
  2000年   107篇
  1999年   109篇
  1998年   97篇
  1997年   92篇
  1996年   92篇
  1995年   73篇
  1994年   68篇
  1993年   62篇
  1992年   53篇
  1991年   60篇
  1990年   48篇
  1989年   43篇
  1988年   27篇
  1987年   23篇
  1985年   56篇
  1984年   85篇
  1983年   55篇
  1982年   87篇
  1981年   64篇
  1980年   46篇
  1979年   48篇
  1978年   39篇
  1977年   39篇
  1976年   30篇
  1975年   28篇
  1974年   21篇
  1973年   27篇
排序方式: 共有8760条查询结果,搜索用时 31 毫秒
991.
992.
A proteomic approach was used to identify proteins involved in post-flooding recovery in soybean roots. Two-day-old soybean seedlings were flooded with water for up to 3 days. After the flooding treatment, seedlings were grown until 7 days after sowing and root proteins were then extracted and separated using two-dimensional polyacrylamide gel electrophoresis (2-DE). Comparative analysis of 2-D gels of control and 3 day flooding-experienced soybean root samples revealed 70 differentially expressed protein spots, from which 80 proteins were identified. Many of the differentially expressed proteins are involved in protein destination/storage and metabolic processes. Clustering analysis based on the expression profiles of the 70 differentially expressed protein spots revealed that 3 days of flooding causes significant changes in protein expression, even during post-flooding recovery. Three days of flooding resulted in downregulation of ion transport-related proteins and upregulation of proteins involved in cytoskeletal reorganization, cell expansion, and programmed cell death. Furthermore, 7 proteins involved in cell wall modification and S-adenosylmethionine synthesis were identified in roots from seedlings recovering from 1 day of flooding. These results suggest that alteration of cell structure through changes in cell wall metabolism and cytoskeletal organization may be involved in post-flooding recovery processes in soybean seedlings.  相似文献   
993.
The proteomic response to bacterial infection in a teleost fish (Paralichthys olivaceus) infected with Streptococcus parauberis was analyzed using label-free protein quantitation coupled with LC-MS(E) tandem mass spectrometry. A total of 82 proteins from whole kidney, a major lymphoid organ in this fish, were found to be differentially expressed between healthy and diseased fish analyzed 6, 24, 72 and 120 h post-infection. Among the differentially expressed proteins, those involved in mediating immune responses (e.g., heat shock proteins, cathepsins, goose-type lysozyme and complement components) were most significantly up-regulated by infection. In addition, cell division cycle 48 (CDC48) and calreticulin, which are associated with cellular recovery and glycoprotein synthesis, were up-regulated in the universal protein group, whereas the other proteins in that group were down-regulated. There was continuous activation of expression of immune-associated proteins during infection, but there was also loss of expression of proteins not involved in immune function. We expect that our findings regarding immune response at the protein level would offer new insight into the systemic response to bacterial infection of a major immune organ in teleost fish.  相似文献   
994.
In the development of ischemia/reperfusion (I/R) injury, the role of the myosin light chain (MLC) phosphorylation has been given increased consideration. ML-7, a MLC kinase inhibitor, has been shown to protect cardiac function from I/R, however the exact mechanism remains unclear. Isolated rat hearts were perfused under aerobic conditions (controls) or subjected to I/R in the presence or absence of ML-7. Continuous administration of ML-7 (5 μM) from 10 min before onset of ischemia to the first 10 min of reperfusion resulted in significant recovery of heart contractility. Analysis of gels from two-dimensional electrophoresis revealed eight proteins with decreased levels in I/R hearts. Six proteins are involved in energy metabolism:ATP synthase beta subunit, cytochrome b-c1 complex subunit 1, 24-kDa mitochondrial NADH dehydrogenase, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, cytochrome c oxidase subunit, and succinyl-CoA ligase subunit. The other two proteins with decreased levels in I/R hearts are: peroxiredoxin-2 and tubulin. Administration of ML-7 increased level of succinyl-CoA ligase, key enzyme involved in the citric acid cycle. The increased level of succinyl-CoA ligase in I/R hearts perfused with ML-7 suggests that the cardioprotective effect of ML-7, at least partially, also may involve increase of energy production.  相似文献   
995.
This paper reports the identification of biomarkers resulting from the exposure of MCF-7/BOS cells to 17β-estradiol (E(2)). The biomarkers were identified using 2 independent and complementary techniques, 2-D DIGE/MALDI-TOF peptide mass fingerprint, and 2-D UPLC-ESI MS/MS. They were identified from the cytosolic fractions of cells treated for 24h with mitogenic concentrations of 1, 30 and 500 pM of 17β-estradiol. Five biomarkers were up-regulated proteins, namely HSP 74, EF2, FKBP4, EF1 and GDIB and one was a down-regulated protein, namely K2C8. Three of these proteins, EF2, FKBP4 and K2C8 are implicated in a network centered on the estrogen receptors ESR1 and ESR2 as well as on AKT1. After the discovery phase, three biomarkers were selected to test the presence of estrogens using selected reaction monitoring (SRM). They were monitored using SRM after incubation of MCF-7/BOS in the presence of E(2) for confirmation or selected xenoestrogens. Daidzein, coumestrol and enterolactone induced an up-regulation of EF2 and FKPB4 proteins, while tamoxifen and resveratrol induced a down-regulation. The exposure of all phytoestrogens induced the down-regulation of K2C8. These markers form a preliminary molecular signature that can be used when testing the estrogenic activity of xenobiotics, either pure or in mixtures.  相似文献   
996.

Introduction

The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis.

Methods

Three 2''-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis.

Results

MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01).

Conclusions

MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.  相似文献   
997.
MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important roles during cell differentiation. Hence, using bipotent K562 human leukemia cells and human CD34+ hematopoietic progenitor cells as research models, we demonstrate that let-7 and Lin28 have contrary roles in megakaryocytic (MK) differentiation with a dynamic balance; expression of miR-181 is capable of effectively repressing Lin28 expression, disrupting the Lin28-let-7 reciprocal regulatory loop, upregulating let-7, and eventually promoting MK differentiation. However, miR-181 lacks a significant effect on hemin-induced erythrocyte differentiation. These results demonstrate that miR-181 can function as a 'molecular switch' during hematopoietic lineage progression specific to MK differentiation, thus providing insight into future development of miRNA-oriented therapeutics.  相似文献   
998.
Aims: Greenhouse and field trials were conducted under different agronomic practices and inoculum doses of environmental Escherichia coli and attenuated E. coli O157:H7, to comparatively determine whether these factors influence their survival on leaves and within the rhizosphere. Methods and Results: Hydroponic conditions: E. coli spray‐inoculated at log 4 CFU ml?1 was recovered from leaf surfaces at a mean population of 1·6 log CFU g?1 at 15 days. E. coli O157:H7 sprayed at log 2 or 4 CFU ml?1 levelled off on spinach leaf surfaces at a mean average population of 1·4 log CFU g?1 after 14 days, regardless of initial dose. Quantitative recovery was inconsistent across leaf developmental age. Field conditions: Average populations of E. coli O157:H7 spray‐inoculated at log 1·45 or 3·4 CFU m?2 levelled off at log 1·2 CFU g?1 over a 14‐day period. Pathogen recovery from leaves was inconsistent when compared to regularly positive detection on basal shoot tissue. Pathogen recovery from soil was inconsistent among sampling locations. Moisture content varied up to 40% DW and was associated with 50% (P < 0·05) decrease in positive locations for E. coli O157:H7 but not for E. coli. Conclusions: Overall, similar populations of environmental E. coli and E. coli O157:H7 were recovered from plants despite differences in inoculum dose and agronomic conditions. Strain source had a significant impact on the quantitative level and duration of survival on leaves and in soil. Water availability appeared to be the determinant factor in survival of E. coli and E. coli O157:H7; however, E. coli showed greater environmental fitness. Significance and Impact of the Study: Persistence of surrogate, indicator E. coli and E. coli O157:H7, irrespective of variable growing conditions in spinach is predominantly limited by water availability, strain source and localization within the plant. These findings are anticipated to ultimately be adopted into routine and investigative pathogen testing protocols and mechanical harvest practices of spinach.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号