首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4930篇
  免费   79篇
  国内免费   52篇
  2023年   24篇
  2022年   21篇
  2021年   45篇
  2020年   30篇
  2019年   37篇
  2018年   43篇
  2017年   34篇
  2016年   227篇
  2015年   643篇
  2014年   1027篇
  2013年   665篇
  2012年   680篇
  2011年   384篇
  2010年   205篇
  2009年   127篇
  2008年   97篇
  2007年   111篇
  2006年   87篇
  2005年   83篇
  2004年   95篇
  2003年   57篇
  2002年   59篇
  2001年   26篇
  2000年   28篇
  1999年   24篇
  1998年   27篇
  1997年   25篇
  1996年   18篇
  1995年   18篇
  1994年   22篇
  1993年   14篇
  1992年   13篇
  1991年   11篇
  1990年   4篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
排序方式: 共有5061条查询结果,搜索用时 15 毫秒
21.
A number of studies have demonstrated increased synthesis of heat shock proteins in brain following hyperthermia or transient ischemia. In the present experiments we have characterized the time course of heat shock RNA induction in gerbil brain after ischemia, and in several mouse tissues after hyperthermia, using probes for RNAs of the 70-kilodalton heat shock protein (hsp70) family, as well as ubiquitin. A synthetic oligonucleotide selective for inducible hsp70 sequences proved to be the most sensitive indicator of the stress response whereas a related rat cDNA detected both induced RNAs and constitutively expressed sequences that were not strongly inducible in brain. Considerable polymorphism of ubiquitin sequences was evident in the outbred mouse and gerbil strains used in these studies when probed with a chicken ubiquitin cDNA. Brief hyperthermic exposure resulted in striking induction of hsp70 and several-fold increases in ubiquitin RNAs in mouse liver and kidney peaking 3 h after return to room temperature. The oligonucleotide selective for hsp70 showed equivalent induction in brain that was more rapid and transient than observed in liver, whereas minimal induction was seen with the ubiquitin and hsp70-related cDNA probes. Transient ischemia resulted in 5- to 10-fold increases in hsp70 sequences in gerbil brain which peaked at 6 h recirculation and remained above control levels at 24 h, whereas a modest 70% increase in ubiquitin sequences was noted at 6 h. These results demonstrate significant temporal and quantitative differences in heat shock RNA expression between brain and other tissues following hyperthermia in vivo, and indicate that hsp70 provides a more sensitive index of the stress response in brain than does ubiquitin after both hyperthermia and ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
22.
Induction of the 70-kDa heat shock protein, hsp70, was evaluated in cultured cerebellar astrocytes and granule cell neurons subjected to a hyperthermic stress, using a monoclonal antibody and an oligonucleotide probe that selectively recognize stress-inducible species of hsp70-related proteins and RNAs, respectively. Immunoblots of cultures enriched in either granule cells or astrocytes, and immunocytochemical localization studies in cocultures of these cell types, demonstrated that hsp70 induction was restricted to the astrocyte population. Amino acid incorporation experiments showed little difference in the loss and recovery of overall protein synthesis activity in these two cell types following transient hyperthermic stress. RNA blot hybridizations confirmed the preferential glial induction of hsp70. In vivo immunocytochemical studies in brains of adult rats following hyperthermia were consistent with earlier observations that suggested a primarily glial and vascular localization of the heat shock response in most brain regions, although the intense immunoreactivity in the cerebellar granule cell layer suggests that there is induction of hsp70 in these neurons under in vivo conditions. These results suggest the potential value of such defined cell cultures in identifying mechanisms responsible for differences in the heat shock response of various cell types in vitro, and in revealing factors that may account for the apparent absence of the stress response in cultured cerebellar granule cell neurons.  相似文献   
23.
The heat shock 70 family of proteins is one of the most highly conserved among all species. The genes encoding these proteins have been cloned and sequenced from bacterial species to humans with a high degree of homology preserved throughout evolution. Here we describe the cloning and characterization of a cDNA encoding a 70 kd heat shock cognate (hsc70) gene from the zebrafish (Danio rerio). A high degree of conservation is observed among hsc70 genes of other species as shown by phylogenetic analysis. The characterization of a hsc70 gene in the zebrafish provides a marker for studying the role of a constitutively expressed member of the hsp70 family in an important developmental and evolutionary model system.  相似文献   
24.
Although considerable effort has been directed at identifying and understanding the function and regulation of stress-induced proteins in herbaceous plants, reports concerning woody plants are limited. Studies with herbaceous crops have revealed similarities in the types of proteins that accumulate in response to a wide array of abiotic stresses and hormonal cues such as the accumulation of abscisic acid. Many of the identified proteins appear to be related to dehydrins (the D-11 subgroup of late-embryogenesis-abundant proteins). The objective of the present study was to determine if seasonal induction of dehydrins is a common feature in woody plants and to see if seasonal patterns existed for other stress-induced proteins. Bark tissues from eight species of woody plants were collected monthly for a period of 1.5 years. The species included: peach (Prunus persica) cv. Loring; apple (Malus domestica) cv. Golden Delicious; thornless blackberry (Rubus sp.) cv. Chester; hybrid poplar (Populus nigra); weeping willow (Salix babylonica); flowering dogwood (Cornus florida); sassafras (Sassafras albidum); and black locust (Robinia pseudo-acacia). Immunoblots of bark proteins were probed with a polyclonal antibody recognizing a conserved region of dehydrin proteins, and monoclonal antibodies directed against members of the HS70 family of heat-shock proteins. Some proteins, immunologically related to dehydrins, appeared to be constitutive; however, distinct seasonal patterns associated with winter acclimation were also observed in all species. The molecular masses of these proteins varied widely, although similarities were observed in related species (willow and poplar). Identification of proteins using the monoclonal antibodies (HSP70, HSC70, BiP) was more definitive because of their inherent specificity, but seasonal patterns were more variable among the eight species examined. This study represents only a precursory examination of several proteins reported to be stress related in herbaceous plants, but the results indicate that these proteins are also common to woody plants and that further research to characterize their regulation and function in relation to stress adaptation and the perennial life cycle of woody plants is warranted.  相似文献   
25.
Molecular evolution of the HSP70 multigene family   总被引:38,自引:0,他引:38  
Eukaryotic genomes encode multiple 70-kDa heat-shock proteins (HSP70s). The Saccharomyces cerevisiae HSP70 family is comprised of eight members. Here we present the nucleotide sequence of the SSA3 and SSB2 genes, completing the nucleotide sequence data for the yeast HSP70 family. We have analyzed these yeast sequences as well as 29 HSP70s from 24 additional eukaryotic and prokaryotic species. Comparison of the sequences demonstrates the extreme conservation of HSP70s; proteins from the most distantly related species share at least 45% identity and more than one-sixth of the amino acids are identical in the aligned region (567 amino acids) among all proteins analyzed. Phylogenetic trees constructed by two independent methods indicate that ancient molecular and cellular events have given rise to at least four monophyletic groups of eukaryotic HSP70 proteins. Each group of evolutionarily similar HSP70s shares a common intracellular localization and is presumed to be comprised of functional homologues; these include heat-shock proteins of the cytoplasm, endoplasmic reticulum, mitochondria, and chloroplasts. HSP70s localized in mitochondria and plastids are most similar to the DnaK HSP70 homologues in purple bacteria and cyanobacteria, respectively, which is consistent with the proposed prokaryotic origin of these organelles. The analyses indicate that the major eukaryotic HSP70 groups arose prior to the divergence of the earliest eukaryotes, roughly 2 billion years ago. In some cases, as exemplified by the SSA genes encoding the cytoplasmic HSP70s of S. cerevisiae, more recent duplication events have given rise to subfamilies within the major groups. The S. cerevisiae SSB proteins comprise a unique subfamily not identified in other species to date. This subfamily appears to have resulted from an ancient gene duplication that occurred at approximately the same time as the origin of the major eukaryotic HSP70 groups. Correspondence to: E.A. Craig  相似文献   
26.
The eukaryotic cyto-/nucleoplasmatic 70-kDa heat-shock protein (HSP70) has homologues in the endoplasmic reticulum as well as in bacteria, mitochondria, and plastids. We selected a representative subset from the large number of sequenced stress-70 family members which covers all known branches of the protein family and calculated and manually improved an alignment. Here we present the consensus sequence of the aligned proteins and putative nuclear localization signals (NLS) in the eukaryotic HSP70 homologues. The phylogenetic relationships of the stress-70 group family members were estimated by use of different computation methods. We present a phylogenetic tree containing all known stress-70 subfamilies and demonstrate the usefulness of stress-70 protein sequences for the estimation of intertaxonic phylogeny. Correspondence to: S.A. Reusing  相似文献   
27.
Cell Size and the Heat-Shock Response in Rat Brain   总被引:1,自引:1,他引:0  
Abstract: The expression of mRNAs encoding two members of the heat-shock protein 70 family, the constitutively-expressed heat-shock cognate (hsc70) mRNA and the strictly heat-inducible (hsp70) mRNA, was quantitated in cerebellar and hippocampal cells of rats 3 h after amphetamine-induced or heat-induced hyperthermia. Intracellular heat-shock mRNA levels in specific cell types were compared with those of total polyadenylic acid [poly(A)] mRNA or 18S rRNA in the same cell type. Levels of poly(A) mRNAs, 18S rRNAs, and hsc70 mRNAs were highest in large neurons and lowest in glia. hsp70 mRNAs were also present at highest levels in large neurons, suggesting that hsp70 mRNAs accumulated as rapidly in these cell types as they did in small neurons and glia. However, compared with levels of intracellular poly(A) mRNAs or levels of rRNAs, large neurons contained two- to 12-fold lower levels of hsp70 mRNAs than neurons of intermediate size and five- to 30-fold lower levels than glia. These results suggest that hsp70 mRNAs accumulated as rapidly in large neurons as in small neurons and glia, but that the large size of these neurons precluded intracellular hsp70 mRNA concentrations increasing as quickly. The susceptibility of large neurons to stress-induced cell death could be due, in part, to their inability to synthesize rapidly hsp70 in sufficient amounts to protect these cells from the initial molecular consequences of stress.  相似文献   
28.
The major 70 kDa heat shock protein (HSP70), which is scarcely expressed in unstressed rodent cells, was apparently induced by infection with herpes simplex virus (HSV). Infection with HSV types 1 and 2 elevated HSP70 mRNA levels within 4 hr post-infection. HSP70 synthesis and accumulation increased in HSV-infected cells. Irradiation of HSV with UV-light abolished the ability to induce HSP70 mRNA. Inhibitors of viral DNA synthesis did not affect the induction of HSP70 in infected cells. Protein synthesis within 2 hr after infection was necessary for HSP70 induction.  相似文献   
29.
An in vitro test method for general metal toxicity screening was designed, based on the cellular response to stress. The expression of a transfected human growth hormone gene sequence driven by the human heat-shock protein 70 promoter in NIH/3T3 cells was used as marker of noxious contact with metal compounds. Out of a series of31 metals, 17 were competentfor inducing this stress response system. According to the effective concentration and to the intensity of the response, three different clusters of positive compounds emerged and were ranked as strong, intermediate strength and weak inducers. These results correlated well with data from other in vivo and in vitro metal toxicity studies, including LD50 in mice. Apparently the positivelnegative compounds also fitted well with data from genotoxicity and carcinogenesis studies on metal salts.Abbreviations hGH human growth hormone - hsp70 70 kDa heat-shock protein  相似文献   
30.
A genomic hsp70 gene was isolated from a rice IR36 genomic library and 4 794 bp of the gene have been sequenoed. The 5' flanking region of the gene contained a putative TATA box and a typical heat shock element sequence 5'-CTcgGAAccTTCgAG-3'. The amino acid sequence of the rice HSP70 deduced from the coding region shared 84%-92% homologies with those of HSP70s from other plant species. An intron 1939bp long was identified in the coding region at the codon specifying amino acid 72 (Asp), the similar position introns occurring in other intron-containing hsp70 genes. In addition, another intron of 57 bp was found in the 3'-untranslated region in the rice hsp70 gene. Southern blot hybridization showed that rice hsp70 gene family contained at least three members. Analysis of the RNA leveis with the gene-specific and non-specific probes revealed that the rice hsp70 gene expressed at normal temperature and the expression was enhanced by heat shock treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号