首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   3篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   12篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1991年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
11.
目的:低温在许多小鼠心跳骤停后复苏模型的研究中被证实是有效的。心跳骤停后释放的氧自由基是产生继发性损伤的一个重要机制。本研究旨在探索心跳骤停期间应用中度低温对复苏后抗氧化物酶活性的影响。方法:用氯化钾诱导8min心跳骤停。此实验分为常温心跳骤停组(NCA)、低温心跳骤停组(HCA)TL对照组。HCA组在心跳骤停5min后开始降温使核心温度维持在(30.0±1.0)℃。应用胸部按压和肾上腺素来复苏。在心跳骤停两组各选择三个时间点:复苏后1h、4h和24h。测量超氧化物歧化酶(SOD)和过氧化氢酶(CAT)在心脏和肝脏的活性。结果:实验动物在HCA组比常NCA组生存率高。HCA组比NCA组复苏时间明显延长。与NCA组相比,HCA组复苏后24h的SOD活性在肝脏表达明显降低。与NCA组相比,HCA组复苏后4h的CAT活性在肝脏表达显著增高。结论:在心跳骤停过程中,与正常体温相比,应用中度低温能够提高生存率。与正常体温相比较,在心跳骤停中期间应用中度低温不影响心脏的SOD与CAT活性,应用中度低温在肝脏可延迟性抑制SOD的活性并且短暂提高CAT活性。  相似文献   
12.
It has been reported that hypothermia induced by arginine vasopressin (AVP) is brought about by a coordinated response of reduced thermogenesis in brown adipose tissue (BAT) and increased heat loss through the tail of rats. However, it is well known that AVP is one of the strongest peripheral vasoconstrictors. Whether the AVP-induced hypothermia is associated with an increase in heat loss through the tail is questionable. Therefore, the present study assessed the relationship between the effects of AVP on tail skin temperature and the induced hypothermic response, and to determine if peripheral AVP administration increases heat loss from the tail. Core, BAT and tail skin temperature were monitored by telemetry in male Sprague–Dawley rats before and after intraperitoneal administration of AVP or vasopressin receptor antagonist. We also analyzed simultaneously of the time-course of AVP-induced hypothermic response and its relationship with changes in BAT temperature, and effect of AVP on grooming behavior. The key observations in this study were: (1) rats dosed with AVP induced a decrease in heat production (i.e., a reduction of BAT thermogenesis) and an increase of saliva spreading for evaporative heat loss (i.e., grooming behavior); (2) AVP caused a marked decrease in tail skin temperature and this effect was prevented by the peripheral administration of the vasopressin V1a receptor antagonist, suggesting that exogenous AVP does not increase heat loss in the tail of rats; (3) the vasopressin V1a receptor antagonist could elevate core temperature without affecting tail skin temperature, suggesting that endogenous AVP is involved in suppression of thermogenesis, but not mediates heat loss in the tail of rats. Overall, the present study does not support the conclusion of previous reports that AVP increased tail heat loss in rats, because AVP-induced hypothermia in the rat is accompanied by a decrease in tail skin temperature. The data indicate that exogenous AVP-induced hypothermia attributed to the suppression of thermoregulatory heat production and the increase of saliva spreading for evaporative heat loss.  相似文献   
13.
It has now been firmly established that, not only ischemia/reperfusion, but also cold itself causes damage during kidney transplantation. Iron chelators or anti-oxidants applied during the cold plus rewarming phase are able to prevent this damage. At present, it is unknown if these measures act only during the cold, or whether application during the rewarming phase also prevents damage. We aimed to study this after cold normoxic and hypoxic conditions. LLC-PK1 cells were incubated at 4 degrees C in Krebs-Henseleit buffer for 6 or 24h, followed by 18 or 6h rewarming, respectively. Cold preservation was performed under both normoxic (95% air/5% CO2) and hypoxic (95% N2/5% CO2) conditions. The iron chelator 2,2'-DPD (100 microM), anti-oxidants BHT (20 microM) or sibilinin (200 microM), and xanthine oxidase inhibitor allopurinol (100 microM) were added during either cold preservation plus rewarming, or rewarming alone. Cell damage was assessed by LDH release (n=3-9). Addition of 2,2'-DPD and BHT during cold hypoxia plus rewarming did, but during rewarming alone did not prevent cell damage. When added during rewarming after 6h cold normoxic incubation, BHT and 2,2'-DPD inhibited rewarming injury compared to control (p<0.05). Allopurinol did not prevent cell damage in any experimental set-up. Our data show that application of iron chelators or anti-oxidants during the rewarming phase protects cells after normoxic but not hypoxic incubation. Allopurinol had no effect. Since kidneys are hypoxic during transplantation, measures aimed at preventing cold-induced and rewarming injury should be taken during the cold.  相似文献   
14.
Nitric oxide and prostacyclin are endogenous endothelium-derived vasodilators, but little information is available on their release during hypothermia. This study was carried out to test the hypothesis that endothelium may modulate vascular reactivity to decreased temperature changes. Segments of contracted (prostaglandin F(2alpha), 2x10(-6)M) canine coronary, femoral, and renal arteries, with and without endothelium, were in vitro ("organ chambers") exposed to progressive hypothermia (from 37 to 10 degrees C) in graded steps. The study is limited to physiological measurements of vascular tone, in the presence or absence of PGI(2) and/or NOS inhibitors, which show correlation with the relaxation. Hypothermia induced vasodilatation of vessels with intact endothelium, which became endothelium-independent below 20 degrees C. This vasodilatation began at 35 degrees C and, in the presence of indomethacin (2x10(-6)M), at 30 degrees C. Endothelium-dependent vasodilatation to hypothermia was blocked by L-NMMA or L-NOARG (10(-5)M), two competitive inhibitors of nitric oxide synthase (n=5 each, P<0.05). Oxyhemoglobin (2x10(-6)M) also inhibited vasodilatation induced by hypothermia (n=6, P<0.05). Pretreatment with either atropine or pirenzepine (10(-6)M) inhibited hypothermia-mediated vasodilatation (n=5 each, P<0.05). The present in vitro study concluded that the endothelium is sensitive to temperature variations and indicated that PGI(2) and NO-dependent pathways may be involved endothelium-dependent relaxation to hypothermia. The endothelium-dependent vasodilatation to hypothermia, in systemic and coronary arteries, is mediated by the M1 muscarinic receptor.  相似文献   
15.
Cold preservation results in cell death via iron-dependent formation of reactive oxygen species, leading to apoptosis during rewarming. We aimed to study cold-induced damage (i.e., injury as a consequence of hypothermia itself and not cold ischemia) in proximal tubular cells (PTC) in various preservation solutions presently applied and to clarify the role of mitochondria in this injury. Primary cultures of rat PTC were incubated at 4 degrees C for 24 h in culture medium, UW, Euro-Collins or HTK solution with and without the iron chelator desferal and rewarmed at 37 degrees C in culture medium. Cell damage, morphology, and apoptosis were studied and mitochondrial membrane potential was assessed by fluorescence microscopy. Cold incubation of PTC in culture medium followed by rewarming caused marked cell damage compared to warm incubation alone (LDH release 39+/-10% vs. 1.6+/-0.3%). Cold-induced damage was aggravated in all preservation solutions (LDH release 85+/-2% for UW; similar in Euro-Collins and HTK). After rewarming, cells showed features suggestive for apoptosis. Desferal prevented cell injury in all solutions (e.g., 8+/-2% for UW). Mitochondrial membrane potential was lost during rewarming and this loss could also be inhibited by desferal. Trifluoperazine, which is known to inhibit mitochondrial permeability transition (MPT), was able to prevent cold-induced injury (LDH 85+/-5% vs. 12+/-2%). We conclude that cold-induced injury occurs in PTC and is aggravated by UW, Euro-Collins, and HTK solution. Iron-dependent MPT is suggested to play a role in this damage. Strategies to prevent cold-induced injury should aim at reducing the availability of "free" iron.  相似文献   
16.
We previously described that the cold-induced apoptosis of cultured hepatocytes is mediated by an increase in the cellular chelatable iron pool. We here set out to assess whether a mitochondrial permeability transition (MPT) is involved in cold-induced apoptosis. When cultured hepatocytes were rewarmed after 18 h of cold (4°C) incubation in cell culture medium or University of Wisconsin solution, the vast majority of cells rapidly lost mitochondrial membrane potential. This loss was due to MPT as assessed by confocal laser scanning microscopy and as evidenced by the inhibitory effect of the MPT inhibitors trifluoperazine plus fructose. The occurrence of the MPT was iron-dependent: it was strongly inhibited by the iron chelators 2,2′-dipyridyl and deferoxamine. Addition of trifluoperazine plus fructose also strongly inhibited cold-induced apoptosis, suggesting that the MPT constitutes a decisive intermediate event in the pathway leading to cold-induced apoptosis. Further experiments employing the non-site-specific iron indicator Phen Green SK and specifically mitochondrial iron indicators and chelators (rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzyl ester, RPA, and rhodamine B-[(2,2′-bipyridin-4-yl)aminocarbonyl]benzyl ester, RDA) suggest that it is the cold-induced increase in cytosolic chelatable iron that triggers the MPT and that mitochondrial chelatable iron is not involved in this process.  相似文献   
17.
Hypothalamic temperature (T hypo) and metabolic heat production (M) were measured in seven conscious rabbits injected intravenously with either saline or with Staphylococcus aureus, (8 · 107 cell walls · kg−1) while being subjected to a 3-h period of ramp-like total body cooling using a chronically implanted intravascular heat exchanger. In pyrogen-injected animals cooling started (1) at the time of injection or (2) 70 min after injection. In (1) the fall in T hypo induced by heat extraction was similar (1.0 °C) in afebrile and febrile animals. In (2) there was a transient increase in T hypo of about 0.5 °C at a time corresponding to the start of fever resulting in a significantly smaller fall in T hypo at the end of the 3-h cooling period (0.5 °C vs 0.9 °C, P < 0.05, n = 5). At this time in both (1) and (2) M was lower than theoretically expected from the increase in shivering threshold during fever. However, most of this effect can be explained when available data showing a decrease in thermosensitivity during S. aureus-induced fever are taken into account. After cessation of cooling in both groups of febrile animals T hypo rose to about 1 °C higher than the precooling level, which is comparable to the fever level in a separate series of experiments with S. aureus injection without cooling (1.2 °C). Accepted: 23 September 1997  相似文献   
18.
Many lower vertebrates (reptilian and amphibian species) are capable of surviving natural episodes of hypoxia and hypothermia. It is by specific metabolic adaptations that anurans are able to tolerate prolonged exposure to harsh environmental stresses. In this study, it was hypothesized that livers from an aquatic frog would possess an inherent metabolic ability to sustain high levels of ATP in an isolated organ system, providing insight into a metabolic system that is well-adapted for low temperature in vitro organ storage. Frogs of the species, R. pipiens were acclimated at 20 °C and at 5 °C. Livers were preserved using a clinical preservation solution after flushing. Livers from 20 °C-acclimated frogs were stored at 20 °C and 5 °C and livers from 5 °C-acclimated frogs were stored at 5 °C. The results indicated that hepatic adenylate status was maintained for 96 h during 5 °C storage, but not longer than 4–10 h during 20 °C storage. In livers from 5 °C-acclimated animals subjected to 5 °C storage, ATP was maintained at 100% throughout the 96-h period. Warm acclimation (20 °C) and 20 °C storage resulted in poorer maintenance of ATP; energy charge values dropped to 0.50 within 2 h and by 24 h, only 24% of control ATP remained. Lactate levels remained less than 25 μ mol/g dry weight in all 5 °C-stored livers; 20 °C-stored livers exhibited greater accumulation of this anaerobic end-product (lactate reached 45–50 μ mol/g by 10 h). The data imply that hepatic adenylate status is largely dependent on exposure to hypothermic hypoxia and although small amounts of ATP were accounted for by anaerobic glycolysis, there must have been either a substantial reduction in cellular energy-utilization or an efficient use of low oxygen tensions. Accepted: 24 August 1998  相似文献   
19.
The African ice rat Otomys sloggetti robertsi is a small rodent confined to cold, alpine habitats. It does not hibernate and is poorly adapted physiologically to low temperatures. We predicted and showed that its fur is denser than its congeners from warmer habitats, but it had shorter fur than expected. Dense fur would provide insulation and piloerection of short fur would facilitate heat gain from solar radiation during sun basking. These traits, in addition to other behavioural and morphological traits, would assist O. s. robertsi in meeting its thermoregulatory requirements in response to low temperatures.  相似文献   
20.
《Cryobiology》2015,70(3):402-410
BackgroundPrevious research aimed at ameliorating hypothermia-induced cardiac dysfunction has shown that inotropic drugs, that stimulate the cAMP, – PKA pathway via the sarcolemmal β-receptor, have a decreased inotropic effect during hypothermia. We therefore wanted to test whether levosimendan, a calcium sensitizer and dose-dependent phosphodiesterase 3 (PDE3) inhibitor, is able to elevate stroke volume during rewarming from experimental hypothermia.MethodsA rat model designed for circulatory studies during experimental hypothermia (4 h at 15 °C) and rewarming was used. The following three groups were included: (1) A normothermic group receiving levosimendan, (2) a hypothermic group receiving levosimendan the last hour of stable hypothermia and during rewarming, and (3) a hypothermic placebo control group. Hemodynamic variables were monitored using a Millar conductance catheter in the left ventricle (LV), and a pressure transducer connected to the left femoral artery. In order to investigate the level of PKA stimulation by PDE3 inhibition, myocardial Ser23/24-cTnI phosphorylation was measured using Western-blot.ResultsAfter rewarming, stroke volume (SV), cardiac output (CO) and preload recruitable stroke work (PRSW) were restored to within pre-hypothermic values in the levosimendan-treated animals. Compared to the placebo group after rewarming, SV, CO, PRSW, as well as levels of Ser23/24-cTnI phosphorylation, were significantly higher in the levosimendan-treated animals.ConclusionThe present data shows that levosimendan ameliorates hypothermia-induced systolic dysfunction by elevating SV during rewarming from 15 °C. Inotropic treatment during rewarming from hypothermia in the present rat model is therefore better achieved through calcium sensitizing and PDE3 inhibition, than β-receptor stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号