首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   1篇
  国内免费   6篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   14篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   17篇
  2005年   11篇
  2004年   15篇
  2003年   8篇
  2002年   13篇
  2001年   6篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有196条查询结果,搜索用时 750 毫秒
11.
Low-molecular-weight glutenin subunits (LMW-GS) have great effect on wheat processing quality, but were numerous and difficult to dissect by SDS-PAGE. The development of functional markers may be the most effective way for a clear discrimination of different LMW-GS genes. In the present study, three different approaches were used to identify SNPs of different genes at Glu-D3 and Glu-B3 loci in bread wheat for the development of six STS markers (3 for Glu-D3 and 3 for Glu-B3 genes) that were validated with distinguished wheat cultivars. Firstly, seven LMW-GS gene sequences ( AY585350, AY585354, AY585355, AY585356, AY585349, AY585351 and AY585353 ) from Aegilops tauschii, the diploid donor of the D-genome of bread wheat, were chosen to design seven pairs of AS-PCR primers for Glu-D3 genes. By amplifying the corresponding genes from five bread wheat cultivars with different Glu-D3 alleles (a, b, c, d and e) and Ae. tauschii, a primer set, S13F2/S13R1, specific to the gene AY585356, was found to be positive to cultivars with alleles Glu-D3c and d. Nevertheless, the other five pairs of primers designed from AY585350, AY585349, AY585353, AY585354 and AY585355, respectively, did not produce specific PCR products to the cultivars tested. Secondly, all the PCR products from the five primer sets without specific characteristics were sequenced and an SNP from the gene AY585350 was detected in the cultivar Hartog, which resulted in the second STS marker S1F1/S1R3 specific to the allelic variant of AY585350. Thirdly, three Glu-D3 sequences (AB062851, AB062865 and AB062872) and three Glu-B3 sequences (AB062852, AB062853 and AB062860) defined by Ikeda et al. (2002) were chosen to query wheat EST and NR databases, and DNA markers were developed based on the putative SNPs among the sequences. Using this approach, four STS markers were developed and validated with 16-19 bread wheat cultivars. The primer set T1F4/T1R1 was also a Glu-D3 gene-specific marker for AB062872, while T2F2/T2R2, T5F3/T5R1 and T13F4/T13R3 were all Glu-B3 gene specific markers for AB062852, BF293671 and AY831800, respectively. The chromosomal locations of the six markers were verified by amplifying the genomic DNA of Ae. tauschii (DD), T. monococcum (AA) and T. turgidum (AABB) entries, as well as Chinese Spring and its group 1 chromosome nulli-tetrasomic lines. The results are useful to discriminate the corresponding Glu-D3 and Glu-B3 genes in wheat breeding programs.  相似文献   
12.
为了研究来自不同麦区的61份同名小麦地方品种小红芒和6份小红芒麦的遗传演变趋势,对与6个产量相关的农艺性状和高分子量麦谷蛋白亚基(high molecular weight glutenin subunits,HMW-GS)组成的变异进行了分析.结果表明,无论是在形态学水平还是蛋白质水平,小红芒和小红芒麦均存在丰富的遗传变异.在形态学水平上,供试材料的变异系数在株高、稳长、有效分蘖数、小穗数、穗粒数和千粒重等农艺性状上的变化范围分别为0.03~0.11、0.06~0.22、0.20~0.65、0.04~0.18、0.14~0.44和0.05~0.29.通过形态学数据计算小红芒和小红芒麦品种内多样性指数和品种间多样性指数,发现前者(0.804)占总多样性指数(0.842)的95.5%,而后者仅占4.5%,可见形态学变异主要来源于品种内而非品种闻,说明这些同名材料是由一个品种演变而来.在HMW-GS组成上,共发现了20种亚基组合类型,其中null,7+8,2+12和null,7+8,2+102种亚基组合出现的频率最高,分别为64.48%和20.00%.比较不同麦区种植的小红芒和小红芒麦的遗传多样性水平,发现无论是在形态学水平还是在蛋白质水平,春麦区材料的遗传多样性均普遍高于冬麦区,并且来自西北春麦区和北部春麦区的材料不仅遗传多样性较高,而且变异来源丰富,其中来自西北春麦区的甘肃天祝一带材料多样性最高,且其所处地理位置便于农作物的传播,故甘肃天祝地区有可能是小红芒的最初种植地点,然后再引种到其他种植区.  相似文献   
13.
The high-molecular-weight glutenin subunits (HMW-GS) of wheat gluten in their native form are incorporated into an intermolecularly disulfide-linked, polymeric system that gives rise to the elasticity of wheat flour doughs. These protein subunits range in molecular weight from about 70 K-90 K and are made up of small N-terminal and C-terminal domains and a large central domain that consists of repeating sequences rich in glutamine, proline, and glycine. The cysteines involved in forming intra- and intermolecular disulfide bonds are found in, or close to, the N- and C-terminal domains. A model has been proposed in which the repeating sequence domain of the HMW-GS forms a rod-like beta-spiral with length near 50 nm and diameter near 2 nm. We have sought to examine this model by using noncontact atomic force microscopy (NCAFM) to image a hybrid HMW-GS in which the N-terminal domain of subunit Dy10 has replaced the N-terminal domain of subunit Dx5. This hybrid subunit, coded by a transgene overexpressed in transgenic wheat, has the unusual characteristic of forming, in vivo, not only polymeric forms, but also a monomer in which a single disulfide bond links the C-terminal domain to the N-terminal domain, replacing the two intermolecular disulfide bonds normally formed by the corresponding cysteine side chains. No such monomeric subunits have been observed in normal wheat lines, only polymeric forms. NCAFM of the native, unreduced 93 K monomer showed fibrils of varying lengths but a length of about 110 nm was particularly noticeable whereas the reduced form showed rod-like structures with a length of about 300 nm or greater. The 110 nm fibrils may represent the length of the disulfide-linked monomer, in which case they would not be in accord with the beta-spiral model, but would favor a more extended conformation for the polypeptide chain, possibly polyproline II.  相似文献   
14.
The low molecular weight (LMW) glutenln subunlts account for 40% of wheat gluten protein content by mass and these proteins are considered to significantly affect dough quality characteristics. Five new full-length LMW glutenln genes (designated LMW-5, LMW-7, LMW-42, LMW-58, and LMW-34) were isolated from the Chinese elite wheat cultivar "Xlaoyan 54" by PCR amplification of genomlc DNA using a pair of degenerate primers designed from the conserved sequences of the N- and C-terminal regions of published LMW glutenln genes. Deduced amino acid sequence analysis showed that LMW-5 belongs to the LMW-i type genes and that the other four belong to LMW-m type genes. Sequence comparisons revealed that point mutations occasionally occurred in signal peptide and N-terminus domains and often existed in domain III and domain V. Small insertions and deletions are represented in the repetitive domain. There is a stop codon after amino acid position 110 In the repetitive domain of LMW.34, indicating that It is a pseudogene. The other four genes have complete open reading frames and the putative mature regions of these genes were subcloned Into pET-30a expression vector and successfully expressed in Escherlchla coll. Protein sodium dodecyl sulfate-polyacrylamlde gel electro- phoresls analysis showed that all proteins expressed in E. coil by the four genes could be related to B-group LMW glutenln subunits of wheat.  相似文献   
15.
We have determined high-resolution apo crystal structures of two low molecular weight penicillin-binding proteins (PBPs), PBP4 and PBP5, from Haemophilus influenzae, one of the most frequently found pathogens in the upper respiratory tract of children. Novel β-lactams with notable antimicrobial activity have been designed, and crystal structures of PBP4 complexed with ampicillin and two of the novel molecules have also been determined. Comparing the apo form with those of the complexes, we find that the drugs disturb the PBP4 structure and weaken X-ray diffraction, to very different extents. PBP4 has recently been shown to act as a sensor of the presence of penicillins in Pseudomonas aeruginosa, and our models offer a clue to the structural basis for this effect. Covalently attached penicillins press against a phenylalanine residue near the active site and disturb the deacylation step. The ready inhibition of PBP4 by β-lactams compared to PBP5 also appears to be related to the weaker interactions holding key residues in a catalytically competent position.  相似文献   
16.
Jang HH  Kim SY  Park SK  Jeon HS  Lee YM  Jung JH  Lee SY  Chae HB  Jung YJ  Lee KO  Lim CO  Chung WS  Bahk JD  Yun DJ  Cho MJ  Lee SY 《FEBS letters》2006,580(1):351-355
The H2O2-catabolizing peroxidase activity of human peroxiredoxin I (hPrxI) was previously shown to be regulated by phosphorylation of Thr90. Here, we show that hPrxI forms multiple oligomers with distinct secondary structures. HPrxI is a dual function protein, since it can behave either as a peroxidase or as a molecular chaperone. The effects of phosphorylation of hPrxI on its protein structure and dual functions were determined using site-directed mutagenesis, in which the phosphorylation site was substituted with aspartate to mimic the phosphorylated status of the protein (T90D-hPrxI). Phosphorylation of the protein induces significant changes in its protein structure from low molecular weight (MW) protein species to high MW protein complexes as well as its dual functions. In contrast to the wild type (WT)- and T90A-hPrxI, the T90D-hPrxI exhibited a markedly reduced peroxidase activity, but showed about sixfold higher chaperone activity than WT-hPrxI.  相似文献   
17.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   
18.
Liu S  Zhu X  Tan Y  Liu S 《Gene》2012,499(1):154-159
The St genome, which is present in nearly half of all Triticeae species, originates from the genus Pseudoroegneria. However, very little is known about the high molecular weight (HMW) subunits of glutenin which are encoded by the St genome. In this paper, we report the isolation from Pd. libanotica of four sequences encoding HMW subunits of glutenin. The four genes were all small compared to standard glutenin genes. All four sequences resemble y-type glutenins rather than x-types. However, their N-terminal domains contain a glutamine residue which is present in all x-type, but very few y-type subunits, and their central repetitive domains included some irregular motifs. The indication is therefore that the Glu-1St genes evolved earlier than other modern day homoeologues, so that they represent an intermediate state in the divergence between x- and y-type subunits. No x-type Glu-1St subunit genes were identified.  相似文献   
19.
利用SDS-PAGE和A-PAGE方法对获得的遗传稳定性逐年提高节节麦-黑麦双二倍体的麦谷蛋白和麦醇溶蛋白进行了分析.结果显示:在高分子量谷蛋白区域,双二倍体共检测到3条带,其中第1和第3条带与亲本节节麦的5t和10t亚基大小一致,中间的第2条带是两亲本都未出现的新麦谷蛋白条带,而黑麦的2r和6.5r亚基在双二倍体材料中未检测到;在低分子量谷蛋白区域,黑麦和节节麦分别有4条和2条带在双二倍体材料中未检测到.在醇溶蛋白的γ和β区,黑麦共有5条带在双二倍体材料中未检测到,在ω区,节节麦有1条带未检测到.研究表明,在双二倍体中两亲本控制贮藏蛋白的基因组之间发生了较大的改变,与亲本节节麦相比较,亲本黑麦控制的贮藏蛋白发生的改变更大;两亲本控制贮藏蛋白基因的遗传方式在双二倍体材料中表现为非加性效应.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号