首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   51篇
  国内免费   26篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   1篇
  2019年   6篇
  2018年   5篇
  2017年   17篇
  2016年   22篇
  2015年   15篇
  2014年   31篇
  2013年   10篇
  2012年   13篇
  2011年   23篇
  2010年   11篇
  2009年   22篇
  2008年   41篇
  2007年   48篇
  2006年   29篇
  2005年   31篇
  2004年   42篇
  2003年   32篇
  2002年   26篇
  2001年   20篇
  2000年   17篇
  1999年   18篇
  1998年   12篇
  1997年   11篇
  1996年   18篇
  1995年   11篇
  1994年   8篇
  1993年   9篇
  1992年   14篇
  1991年   9篇
  1990年   9篇
  1989年   5篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1975年   2篇
排序方式: 共有646条查询结果,搜索用时 703 毫秒
61.
Mesopodopsis africana is an important mysid in southern African coastal zooplankton and a key species in the St Lucia estuarine lake, which is currently undergoing severe desiccation owing to freshwater deprivation. M. africana populations through much of the system are consequently under severe environmental stress. This study investigates the grazing dynamics of this mysid species, in relation to autotrophic food availability and other environmental constraints in two contrasting areas of the St Lucia Estuary, Charters Creek, heavily affected by the desiccation process and the Mouth, virtually under unchanged conditions. Gut evacuation experiments were conducted once each during the day and the night. Evacuation rates were consistently higher during the night, ranging from 0.27 to 0.33 h-1 at Charters Creek and from 1.13 to 1.24 h-1 at the Mouth. Ingestion rates were, therefore, higher at the Mouth resulting in population grazing impacts of 2.5% of the total microalgal biomass, while the grazing impact at Charters Creek was only 0.5%. The spatial variation in ingestion rates could be attributed to seasonal differences in gut evacuation rates, differences in the mean size of mysids used, or the physicochemical conditions present at the two stations. It is suggested that mysid populations at Charters Creek are predominantly driven by bottom-up forces, initiated by the harsh environmental conditions. Despite the lower ingestion rates exhibited at Charters Creek, results indicate that these mysids are capable of meeting all their energetic requirements from a microalgal diet alone, although they may also utilise a heterotrophic diet.  相似文献   
62.
Question: How is tundra vegetation related to climatic, soil chemical, geological variables and grazing across a very large section of the Eurasian arctic area? We were particularly interested in broad‐scale vegetation‐environment relationships and how well do the patterns conform to climate‐vegetation schemes. Material and Methods: We sampled vegetation in 1132 plots from 16 sites from different parts of the Eurasian tundra. Clustering and ordination techniques were used for analysing compositional patterns. Vegetation‐environment relationships were analysed by fitting of environmental vectors and smooth surfaces onto non‐metric multidimensional scaling scattergrams. Results: Dominant vegetation differentiation was associated with a complex set of environmental variables. A general trend differentiated cold and continental areas from relatively warm and weakly continental areas, and several soil chemical and physical variables were associated with this broad‐scaled differentiation. Especially soil chemical variables related to soil acidity (pH, Ca) showed linear relationships with the dominant vegetation gradient. This was closely related to increasing cryoperturbation, decreasing precipitation and cooler conditions. Remarkable differences among relatively adjacent sites suggest that local factors such as geological properties and lemming grazing may strongly drive vegetation differentiation. Conclusions: Vegetation differentiation in tundra areas conforms to a major ecocline underlain by a complex set of environmental gradients, where precipitation, thermal conditions and soil chemical and physical processes are coupled. However, local factors such as bedrock conditions and lemming grazing may cause marked deviations from the general climate‐vegetation models. Overall, soil chemical factors (pH, Ca) turned out to have linear relationship with the broad‐scale differentiation of arctic vegetation.  相似文献   
63.
Tolerance to grazing is a plant trait that can be adaptive in systems where plants are subjected to a diversity of herbivore attack types. To test the tolerance ability of the clonal sedge Carex bigelowii, which is food plant to several herbivores in alpine and arctic areas, and the potential fitness costs of this tolerance, replicated units of genets were subjected to three levels of damage throughout three consecutive seasons. The three levels of treatment were no damage, light damage and heavy damage, and the damage was conducted by tearing off all plant material at 3 and 0 cm above-ground respectively. The genets had no tolerance under damage in terms of sexual reproduction. In terms of clonal reproduction the genets showed tolerance under light damage but not under heavy damage. However, no fitness cost was found for this tolerance ability, i.e. genets had higher reproduction and growth under no damage. The average ramet weight had a similar decrease under both a low and high damage treatment. Changed partitioning of biomass between plant parts and reduced concentration of total non-structural carbohydrates (TNC) in storage organs are possible mechanisms for the ability to uphold clonal reproduction in response to damage. There were no significant indications that tolerance ability or its fitness cost differed between genets. Our results suggest that when subjected to heavy damage genets will only reproduce vegetatively. Consequently, it seems C. bigelowii has evolved to allocate resources to the survival of an already successful genet rather than to a potential new genet of unknown success.  相似文献   
64.
Woody colonization of grasslands is often associated with changes in abiotic or biotic conditions or a combination of both. Widely used as fodder and litter in the past traditional agro-pastoral system, ash (Fraxinus excelsior L.) has now become a colonizing species of mountain grasslands in the French Pyrenees. Its present distribution is dependent on past human activities and it is locally controlled by propagule pressure and abiotic conditions. However, even when all favourable conditions are met, all the potentially colonizable grasslands are not invaded. We hypothesize that management practices should play a crucial role in the control of ash colonization. From empirical field surveys we have compared the botanical composition of a set of grasslands (present and former) differing in management practices and level of ash colonization. We have displayed a kind of successional gradient positively linked to both ash cover and height but not to the age of trees. We have tested the relationships between ash presence in grassland and management types i.e. cutting and/or grazing, management intensity and some grassland communities’ features i.e. total and local specific richness and species heterogeneity. Mixed use (cutting and grazing) is negatively linked to ash presence in grassland whereas grazing alone positively. Mixed use and high grazing intensity are directly preventing ash seedlings establishment, when low grazing intensity is allowing ash seedlings establishment indirectly through herbaceous vegetation neglected by livestock. Our results show the existence of a limit between grasslands with and without established ashes corresponding to a threshold in the intensity of use. Under this threshold, when ash is established, the colonization process seems to become irreversible. Ash possesses the ability of compensatory growth and therefore under a high grazing intensity develops a subterranean vegetative reproduction. However the question remains at which stage of seedling development and grazing intensity these strategies could occur.  相似文献   
65.
In this study, we use classical and geostatistical methods to identify characteristics of some selected soil properties including soil particle size distribution, soil organic carbon, total nitrogen, pH and electrical conductivity and their spatial variation in a 5-year recovery degraded sandy grassland after two different grazing intensity disturbance: post-heavy-grazing restoration grassland (HGR) and post-moderately grazing restoration grassland (MGR), respectively, in Horqin steppe, Inner Mongolia, northern China. The objective was to examine effect of grazing intensity on spatial heterogeneity of soil properties. One hundred soil samples were taken from the soil layer 0–15 cm in depth of a grid of 10 m×10 m under each treatment. The results showed that soil fine fractions (very fine sand, 0.1–0.05 mm and silt + clay, <0.05 mm), soil organic carbon and total nitrogen concentrations were significant lower and their coefficients of variation significant higher under the HGR than under the MGR. Geostatistical analysis of soil heterogeneity revealed that soil particle size fractions, organic carbon and total nitrogen showed different degree of spatial dependence with exponential or spherical semivariograms on the scale measured under HGR and MGR. The spatial structured variance account for a large proportion of the sample variance in HGR plot ranging from 88% to 97% for soil particle fractions, organic C and total N, however, except for organic C (88.8%), the structured variance only account for 50% of the sample variance for soil particle fractions and total N in the MGR plot. The ranges of spatial autocorrelation for coarse-fine sand, very fine sand, silt + clay, organic C and total N were 13.7 m, 15.8 m, 15.2 m, 22.2 m and 21.9 m in HGR plot, respectively, and was smaller than in MGR plot with the corresponding distance of 350 m, 144.6 m, 45.7 m, 27.3 m and 30.3 m, respectively. This suggested that overgrazing resulted in an increase in soil heterogeneity. Soil organic C and total N were associated closely with soil particle fractions, and the kriging-interpolated maps showed that the spatial distribution of soil organic C and total N corresponded to the distribution patterns of soil particle fractions, indicating that high degree of spatial heterogeneity in soil properties was linked to the distribution of vegetative and bare sand patches. The results suggested that the degree of soil heterogeneity at field scale can be used as an index for indicating the extent of grassland desertification. Also, the changes in soil heterogeneity may in turn influence vegetative succession and restoration process of degraded sandy grassland ecosystem.  相似文献   
66.
This study, conducted in mesocosms, natural field sites, and in laboratory aquaria, showed that eutrophication altered the nutrient status and dominance patterns among marine macroalgae, which in turn, stimulated gammaridean density. Gammaridean abundance correlated positively with both nutrient addition and the amount of green algae (also stimulated by nutrient enrichment). Path analysis indicated that the direct effect of nutrients on gammaridean density was of less importance than the indirect effect through increased production of green algae. In cage colonisation experiments, either in the field or in a control mesocosm kept under ambient nutrient conditions, more gammarids colonised nutrient enriched algae (E-algae) than algae with ambient nutrient levels (A-algae). Gammarus locusta generally grew faster on nutrient enriched algal specimens and when reared on green rather than on brown algae (fucoids). The nutrient status of periphytic algae did not affect gammaridean growth significantly, but the number of egg-carrying females (and thus egg production) was significantly higher among gammarids reared on E-periphyton. The gammaridean habitat preference order (red > green > brown > periphyton) was almost the reverse of their growth rate in feeding assays (periphyton > green > brown). This implies that macroalgae may be more important as a habitat than as a food source for these animals, which then have to become mobile in search of optimal food items. In this process, algal nutrient content was important as the gammarids in our study actively chose high quality nutrient-rich food, which, in addition, increased their fitness. Stimulated growth rates and egg production may ultimately lead to population increase, which, combined with the preference for high nutrient food items may dampen the initial effect of nutrient enrichment (i.e. blooms of green macroalgae) in shallow coastal waters.  相似文献   
67.
Drewa PB  Peters DP  Havstad KM 《Oecologia》2006,150(1):29-39
Relationships involving fire and perennial grasses are controversial in Chihuahuan Desert grasslands of southern New Mexico, USA. Research suggests that fire delays the resprouting of perennial grasses well after two growing seasons. However, such results are confounded by livestock grazing, soil erosion, and drought. Additionally, post-fire grass responses may depend on initial clone size. We evaluated the effects of fire, grazing, and clone size on Bouteloua eriopoda (black grama) in southern New Mexico grasslands. Four 2-ha plots were established in each of four sites. Fire and grazing were applied or not applied in 1999 such that four treatment combinations were assigned randomly to plots within each site. Within each plot, small (0–10 cm2 basal area), medium (10–30 cm2), and large ( > 30 cm2) clones were initially mapped in five 0.91-m2 quadrats where grass attributes and litter cover were evaluated before and at the end of two growing seasons following fire. Maximum fire temperature was also measured. At a population level, canopy and litter cover were each approximately 50% less in burned than unburned areas. However, compared to initial levels, canopy height had increased by 10% at the end of the study, regardless of fire. At a clonal level, basal cover reductions were attributed mostly to large clones that survived fire. Smaller clone densities had decreased by as much as 19% in burned compared to unburned areas, and fire reduced the basal cover of medium clones. Basal and canopy cover, recruitment, and clone basal area decreased with increased fire temperatures. Almost all responses were independent of grazing, and interactive effects of grazing and fire were not detected. Fire did not kill all perennial grass clones, regardless of size. However, rapid responses were likely influenced by above-average precipitation after fire. Future studies in desert grasslands should examine how perennial grass dynamics are affected by fire, precipitation patterns, and interactions with grazing.  相似文献   
68.
The conformation and correlations of amphiphilic and antimicrobial peptides and the associated changes of lipid bilayers can be studied in oriented lipid membranes deposited on solid substrates. Here we review recent work on these systems, as studied by modern interface-sensitive X-ray and neutron scattering methods. Density profile, short range order of acyl chains and molecular conformations of peptides and lipids are probed in the fluid state of the bilayer. With an emphasis on technical aspects, we review recent work illustrating the potential of the methods and discuss its potential in the field.  相似文献   
69.
70.
The aim of this study was to assess the grazing, social and comfort behaviour of the indigenous purebred Ankole cattle breed and crossbred (Holstein × Ankole) animals under typical management conditions in south western Uganda. Twelve focal animals in each of four groups (two groups per genotype) were observed regarding their grazing, social and comfort behaviour on pasture.No significant differences in grazing behaviour patterns (eating, walking, standing) were found between the genotypes. Resting occurred only very rarely in both genotypes. Walking distances of Ankole and Ankole × Holstein crosses were also similar. There was no difference in the occurrence of agonistic interactions between the two genotypes. However, Ankole cattle engaged in more non-agonistic social interactions than their crossbred counterparts. Individual distances were lower in Ankole heifers and more herd mates were found within a radius of 5 m around the Ankole animals. The most important comfort behaviour pattern in both genotypes was self-licking, which occurred to similar frequency in Ankole and crossbred heifer groups. Crossbred animals scratched themselves and rubbed on objects more often than Ankole heifers.Although Ankole cattle and their Holstein crosses did not differ in grazing, distances walked and agonistic behaviours, the significant differences between the two genotypes in herd cohesion and comfort behaviour may pose challenges on the management of crossbred animals under extensive open grazing conditions as present in south western Uganda. Thus, apart from (re)productive performance traits, behavioural traits of both genotypes may also be taken into account for breeding decisions and management under current production conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号