首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   50篇
  国内免费   26篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   1篇
  2019年   6篇
  2018年   5篇
  2017年   17篇
  2016年   22篇
  2015年   15篇
  2014年   31篇
  2013年   10篇
  2012年   13篇
  2011年   23篇
  2010年   11篇
  2009年   22篇
  2008年   41篇
  2007年   48篇
  2006年   29篇
  2005年   31篇
  2004年   42篇
  2003年   32篇
  2002年   26篇
  2001年   20篇
  2000年   17篇
  1999年   18篇
  1998年   12篇
  1997年   11篇
  1996年   18篇
  1995年   11篇
  1994年   8篇
  1993年   9篇
  1992年   14篇
  1991年   9篇
  1990年   9篇
  1989年   5篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1975年   2篇
排序方式: 共有646条查询结果,搜索用时 15 毫秒
31.
Whether or not niche conservatism is common is widely debated. Despite this uncertainty, closely related species are often assumed to be ecologically similar. This principle has led to the proposed use of phylogenetic information in forecasting species responses to environmental change. Tests of niche conservatism often focus on ‘functional traits’ and environmental tolerances, but there have been limited tests for conservatism in species’ responses to changes in the environment, especially in the field. The prevalence of functional convergence and the likelihood of functional trade-offs in a heterogeneous environment suggest that conservatism of the response niche is unlikely to be detectable under natural conditions. To test the relevance of evolutionary information in predicting ecological responses, we tested for conservatism (measured as phylogenetic signal) of grassland plant population responses to 14 treatments (e.g. light, nutrients, water, enemies, mutualists), each manipulated for 2–3 years, and 4 treatment categories (aboveground, belowground, resource, and herbivory) at a single site. Individual treatment responses showed limited evidence of conservatism, with only weak conservatism in plant responses to mycorrhizae and grazing. Aspects of the response niche were conserved among monocots both aboveground and belowground, although the pattern varied. Conservatism was limited to grazing aboveground, but belowground responses were conserved as a group, suggesting fundamental differences in how selection has led to niche conservatism in aboveground and belowground environments. Overall, our results suggest that conservatism of the response niche is not common, but is actually rare. As such, evolutionary relationships are likely to be of limited relevance for predicting species responses under field conditions, at least over the short time scales used in this study.  相似文献   
32.
Arbuscular mycorrhizal fungi (AMF) are related to plant community dynamics and ecosystem functioning. Overgrazing can negatively affect plant performance, and consequently unbalance the association with AMF. We studied the grazing effect on AMF colonization for preferred (Bromus pictus and Poa ligularis) and unpreferred grasses (Pappostipa speciosa and Pappostipa humilis) by sheep in the Patagonian steppe. For each species, AMF colonization in ungrazed, moderate and intense grazing sites was quantified. In ungrazed areas, B. pictus showed the highest extent of AMF colonization. Mycorrhizal colonization was higher during the active season, and largely reduced by intense grazing conditions. The decrease of AMF colonization was maximal for the most preferred species, but also significant for the unpreferred species. Our results suggest that overgrazing could reduce mycorrhizal benefits for the plant by reduction of AMF colonization, which can be a good indicator of ecosystem functioning, eventually revealing an increasing degree of environmental degradation.  相似文献   
33.
Grassland management intensification can greatly influence nitrogen (N) dynamics between aboveground and belowground compartments mainly because of the large amount of available N forms, which are repeatedly added to soils. A better understanding of how chronic fertilisation might affect N use efficiency (NUE) in plants can contribute to reducing N losses from soils and improve the sustainability of managed grasslands. Here we address how NUE might be affected by (1) the addition of key nutrients (e.g. N, P, K, Mg) in different combinations, (2) grazing by rabbits, and (3) liming (i.e. CaCO3 applications) in a 22-year-old permanent grassland experiment established in Berkshire, UK, in 1991. We first calculate seven different NUE indexes, which are known to respond either to changes in soil N availability (i.e. endogenous N inputs from soil N mineralization processes) or to exogenous N inputs (i.e. synthetic N fertiliser). We found that plant NUE calculated as plant biomass produced per unit of N acquired significantly decreased under the chronic addition of multiple nutrients (NPKMg) and was even lower under N-only applications. Most NUE indexes significantly decreased under grazing but greatly increased under liming applications. We found evidence that NUE indexes, which accounted for endogenous N sources decreased at increased rates of soil N mineralization. Finally, we found no significant relationships between any of the NUE indexes and estimates of soil N losses (Mg N ha−1) or N retention in soils (i.e. units of soil N retained per unit of N added) calculated from changes in net soil N budget over 22 years. Our study carried out on relatively acidic sandy soils suggests how liming applications in combination with low levels of multi-nutrient additions (NPKMg) can significantly improve plant biomass production per unit of N added thus contributing to enhance the sustainability of managed grassland ecosystems.  相似文献   
34.
The monolayer structure of pure dipalmitoylphosphatidylcholine (DPPC) and equimolar mixtures of DPPC/n-hexadecanol (C(16)OH) and DPPC/dipalmitoylglycerol (DPG) are studied by the film balance technique and grazing incidence X-ray diffraction measurements. At 20 degrees C, the binary systems exhibit complete miscibility. In contrast to pure DPPC monolayers, a condensing effect is observed in the presence of both non-phospholipid additives; but the phase transition behavior differs. The tilt angle of the hydrocarbon chains in the DPPC/C(16)OH mixture is significantly smaller than in pure DPPC monolayers. The tilt of the chains is even further reduced in the mixed monolayer of DPPC/DPG. A comparison of the three systems reveals distinct structural features such as phase state, chain tilt, and molecular area over a wide range of surface pressures. Therefore, these monolayers provide a highly suitable model to investigate the influence of structural parameters on biological processes occurring at the membrane surface, e.g. enzymatic reactions and adsorption events.  相似文献   
35.
Saint Pierre  C.  Busso  C.A.  Montenegro  O.A.  Rodríguez  G.D.  Giorgetti  H.D.  Montani  T.  Bravo  O.A. 《Plant Ecology》2003,165(2):161-167
Root proliferation of desirable (Stipa clarazii andS. tenuis) and undesirable (S.ambigua)perennial grasses was studied in semiarid rangelands of Central Argentina(40°39S, 62°54W) in 1998. On 17 September, soil coreswereremoved from the edge of the plant, metal structures lined with screen mesh(hereafter called bags) were buried in the holes, and root-free soil was placedinto these structures. Numbers of green tillers and circumference per plant hadpreviously been determined. Since plants were of unequal size among species,root length and root dry weight data are reported on a per green tiller basis.Half of the plants was defoliated to 5 cm stubble height on 17September and/or 12 October, while the other half remained undefoliated(controls). Bags were destructively harvested either 20 days after the firstdefoliation (first sampling) or 56 days after the second defoliation (secondsampling) by digging out soil very carefully around each bag. Roots were washedfrom soil, root length estimated by the line intercept method, root dry weightdetermined after oven-drying, and root length per unit root dry weightcalculated from the two measured variables. Root length and dry weight weremorethan 96% greater on defoliated and undefoliated plants ofS. clarazii than on those of S.tenuisor S. ambigua for both sampling dates. Root length perunitroot dry weight, however, was more than 43% greater (p < 0.05) inS. tenuis than in S. clarazii andS. ambigua during the second sampling. Defoliated plantshada similar root length and root dry weight than undefoliated plants in all threespecies, although plants of S. tenuis defoliated twiceshowed a greater (p < 0.05) root length than undefoliated controls. Rootlength and root dry weight were similar between sampling periods, except onundefoliated plants of S. tenuis which had a greater (p<0.05) root length and root dry weight at the first than at the second sampling.Although root length per unit root dry weight may be greater inS. tenuis than in S. clarazii andS. ambigua, greater root length and dry weight increasesinS. clarazii after defoliation appear determinant incontributing to explain its greater competitive ability and defoliationtolerance when compared with the other two species.Nomenclature of taxa followed.  相似文献   
36.
Witkowski  E.T.F.  Garner  R.D. 《Plant Ecology》2000,149(1):91-106
In southern African savannas, bush encroachment is a major problem for range managers. However, little is understood of the actual regeneration processes leading to it, and in particular the role of soil seed banks. The horizontal (between microsites) and vertical (with depth in litter and soil) distribution of soil seed banks of the microphyllous woody species, Acacia tortilis, A. nilotica and Dichrostachys cinerea (all legumes of the Mimosoideae), were quantified in an area with low intensity grazing (reserve), and a bordering cattle farm with high intensity grazing (farm). Species differed in seed bank densities between microsites and sites. Seed densities for all species were highest below parent tree canopies and decreased with distance beyond the canopy, and with soil depth. D. cinerea had the smallest seed bank associated with parent trees, particularly on the farm (8 vs. 1643 seeds/tree on the reserve), A. tortilis had the largest (6357, 31910), with A. nilotica intermediate (1789, 1906). The proportion of current (recently fallen) versus old (1 year old) seeds differed between species and sites. These species form at least short-term persistent seed banks with the old seeds largely representing the persistent seed bank. Seed densities in the open (inter-canopy) and those dispersed under either of the other two (non-parental) study species were much lower than those associated with parent trees. The latter were mostly found under the acacias (single-stemmed) rather than D. cinerea (multistemmed). Total seed store per parent plant increased with plant size (best fits were mostly power curves of canopy area). A large proportion of intact seeds were viable, namely 81–84% for A. tortilis, 68–77% for A. nilotica and 63–78% for D. cinerea, with no differences between sites. Viability tended to increase with depth of burial, except for A. nilotica seeds at the 3–5 cm depths on the farm. At the landscape scale there were 1.5 million and 140000 A. tortilis seeds/ha on the reserve and farm respectively, with corresponding values of 2000 and 31000 for D. cinerea, and 23000 and 86000 for A. nilotica.  相似文献   
37.
Abstract. Australian alpine vegetation is confined to the southeast of the continent and the island of Tasmania. It exhibits strong geographic patterns of floristic variation. These patterns have been attributed to variation in edaphic conditions resulting from geographic variation in substrate, climate and glacial history. This edaphic hypothesis is tested using floristic and environmental data from 166 quadrats distributed throughout the floristic and geographic range of Australian alpine vegetation. Environmental vector fitting in three-dimensional ordination space, the number of significant environmental differences between all pairs of 17 floristic groups and overall statistical analyses of the environmental differences between communities suggest a primacy of climatic variables over edaphic variables in explaining the broad patterns of floristic variation. Continentality, summer warmth, summer rainfall and winter cold all provide a better statistical explanation of floristic variation than the most explanatory of the edaphic variables, extractable P. The environmental variables that best discriminate the groups at each dichotomy of the divisive classification of the floristic data are largely climatic at the upper two levels, with edaphic, topographic and biotic variables being generally more important than climatic variables at the lower levels. Many of the edaphic variables that were most important in discriminating dichotomous groups were relatively insignificant in the broader analyses, suggesting that it is important to partition large data sets for environment/floristic analyses. The results of such partitioning show that the environmental factors most important in influencing floristic variation in alpine vegetation in Australia vary by location and geographic scale.  相似文献   
38.
Katoh  Kazuhiro  Takeuchi  Kazuhiko  Jiang  Deming  Nan  Yinhao  Kou  Zhenwu 《Plant Ecology》1998,139(2):133-144
Grazing control has been reported to be effective for the control of desertification in semi-arid regions. However, economic reasons often make complete inhibition of grazing (complete exclosure) difficult to carry out. Grazing control has been applied to the Kerqin Sandy Lands, Inner Mongolia, China, by means of seasonal exclosure, whereby grazing is allowed from November to April. The harvesting of hay is also allowed once during September - October. The aim of the reported study was to evaluate the effectiveness of this seasonal exclosure on vegetation restoration. Species compositional data were obtained from 356 quadrats and ordinated by Detrended Correspondence Analysis (DCA). Ordination indicated that landform was the most important factor influencing the species composition of the vegetation. Regardless of landform and type of grazing control, however, vegetation coverage, vegetation height and species richness were higher at sites where grazing had been controlled, than at sites lacking any control. Perennial species were dominant at the former while annual species were dominant at the latter. Both shrub and tree species were quite rare at the sites where seasonal exclosure had been carried out. It is concluded that seasonal exclosure is sufficient to restore and maintain grassland vegetation in and around the study area. When shrubby or tree vegetation is needed for reasons such as fixing sands or preventing sand dune remobilization, complete exclosure is recommended.  相似文献   
39.
This study set out to generate estimates of the standing perennial biomass for six different vegetation types, and associated upland and lowland habitats, across the altitudinal gradient presented by the Kamiesberg mountain range in the Namaqualand region of the Northern Cape Province of South Africa. Volume-biomass regressions, established for 94 perennial species accounting for 70–80% of the plant cover, were used to generate these estimations. Comparisons to other studies give similar findings, corroborating the method adopted. Biomass was found to vary significantly in relation to the altitudinal, and associated rainfall, gradient, as well as by habitat type where the rocky uplands have considerably more biomass that the sandy lowland habitats. An examination of the impact of sustained heavy grazing associated with a communal rangeland on this standing perennial biomass, showed a significant decrease in on the lowland habitats. This loss in biomass is principally of palatable species, with no evidence of a response in terms of perennial biomass. These findings point to degradation on the lowland habitats of the communal rangeland, with negative consequences for livestock farmers in the region.  相似文献   
40.
Three years after a river restoration scheme in the Syr Valley (Luxembourg) we investigated habitat development and habitat use of Galloway cattle deployed in a low-intensity grazing system on a permanent floodplain pasture. Habitats were delimited with a mobile GPS/GIS mapping system and their spatial development was assessed over three consecutive years. During these three years, the patches of the six habitats decreased to 40% of mean initial size, and a rapid net area expansion of wetland habitats (large sedge swamps: +100%, marsh and tall forb grasslands: +43%) was observed. The behavioural patterns and grazing preferences of the cattle were observed directly during the vegetation period in June, August and November. These observations were complemented by a transect analysis of cattle impact indicators in June and November. The cattle grazed the different habitats very selectively, as they preferred the mesophilic, and ruderal grasslands 1.6, and 5.6 times more than expected respectively. During the growing season, the grazing niche breadth declined (3.92 in June to 2.68 in November), and less preferred forage habitats like large sedge swamps were grazed primarily in the autumn. We used bite and step rates to investigate grazing intensity by habitat type. During summer, grazing intensity correlated with forage quality in the different habitat patches, whereas in autumn it was obviously influenced by the effort required to access the desired forage plants in a given habitat. The impact indicators revealed a matter transfer from riparian areas to the valley edge. Here, we give a first insight into habitat development and habitat use of Galloway cattle in a recently restored floodplain area and derive recommendations for the adaptive management of future projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号