首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1998年   2篇
  1993年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
31.
The biologically active conformation of thymopoietin, based on X-ray data reported for a discontinuous thymopoietin-like motif of G-actin, is proposed.  相似文献   
32.
The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently with the use of the yeast mutant actin L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked globular actin monomer does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin, to assist with actin nucleation, and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not individually, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin, the helical twist of filamentous actin (F-actin) changes by ∼ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin and a change of twist by ∼ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics in both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors.  相似文献   
33.
The object of this study was to examine the effect of elevated in vitro glucose concentrations on protein modification and functional changes in human erythrocytes. Groups were exposed to 5-45 mM glucose concentrations. The time effect of any changes was also evaluated. In erythrocyte ghosts, protein glycation and oxidation were evaluated using spectrophotometric methods. G-actin was measured by a DNase I inhibition assay in cell lysates. Erythrocyte deformability was assessed using a cell transit analyser. At 24 h, a significant protein oxidation (at 25 and 45 mM glucose; p < 0.05), and G-actin increase was observed for all concentrations (p < 0.05). At 48 h, a significant increase in glycation (25 and 45 mM glucose; p < 0.05), protein oxidation (p < 0.05), and G-actin (p < 0.05) was observed in all groups. A significant positive correlation was observed between glucose /protein oxidation, glucose/G-actin and protein oxidation/G-actin at 24 and 48 h. Our findings show that the oxidative effect of glucose on erythrocytes depends on concentration and incubation time. We also present the first evidence of increased G-actin in human erythrocytes exposed to high glucose concentrations as a diabetes model.  相似文献   
34.
35.
Vibrio cholerae is the cause of the diarrheal disease cholera. V. cholerae produces RtxA, a large toxin of the MARTX family, which is targeted to the host cell cytosol, where its actin cross-linking domain (ACD) cross-links G-actin, leading to F-actin depolymerization, cytoskeleton rearrangements, and cell rounding. These effects on the cytoskeleton prevent phagocytosis and bacterial engulfment by macrophages, thus preventing V. cholerae clearance from the gut. The V. cholerae Type VI secretion-associated VgrG1 protein also contains a C-terminal ACD, which shares 61% identity with MARTX ACD and has been shown to covalently cross-link G-actin. Here, we purified the VgrG1 C-terminal domain and determined its crystal structure. The VgrG1 ACD exhibits a V-shaped three-dimensional structure, formed of 12 β-strands and nine α-helices. Its active site comprises five residues that are conserved in MARTX ACD toxin, within a conserved area of ∼10 Å radius. We showed that less than 100 ACD molecules are sufficient to depolymerize the actin filaments of a fibroblast cell in vivo. Mutagenesis studies confirmed that Glu-16 is critical for the F-actin depolymerization function. Co-crystals with divalent cations and ATP reveal the molecular mechanism of the MARTX/VgrG toxins and offer perspectives for their possible inhibition.  相似文献   
36.
The β4-and β10-thymosins, recently identified as actin monomer-sequestering proteins, are developmentally regulated in brain. Using specific mRNA and protein probes, we have used in situ hybridization and immunohis-tochemical techniques to investigate the distribution of the β-thymosin mRNAs and their proteins in developing rat cerebellum. Early in postnatal development, both β-thymosin mRNAs were expressed at highest levels in the postmitotic, premigratory granule cells of the external granular layer; expression diminished as granule cells migrated to and differentiated within the developing internal granular layer. In addition, both β-thymosin proteins were present in bundles of cerebellar afferent fibers in the white matter at this time. Throughout the maturation period, both proteins were present in elongating parallel fibers in the upper portion of the molecular layer. Later in cerebellar development, thymosin β4, but not thymosin β10, was expressed in Golgi epithelial cells and Bergmann processes. Thymosin β4 was expressed in a small population of cells with microglial morphology scattered throughout the gray and white matter. Thymosin β10 was detected in an even smaller population of glia. Expression of thymosin β4 and thymosin β10 in premigratory granule cells and in growing neuronal processes is consistent with the possibility that both β-thymosins are involved in the dynamics of actin polymerization during migration and process extension of neurons.  相似文献   
37.
38.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号