首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6200篇
  免费   682篇
  国内免费   171篇
  2024年   12篇
  2023年   174篇
  2022年   199篇
  2021年   405篇
  2020年   359篇
  2019年   322篇
  2018年   355篇
  2017年   291篇
  2016年   278篇
  2015年   320篇
  2014年   499篇
  2013年   506篇
  2012年   321篇
  2011年   352篇
  2010年   203篇
  2009年   296篇
  2008年   339篇
  2007年   273篇
  2006年   245篇
  2005年   204篇
  2004年   167篇
  2003年   162篇
  2002年   104篇
  2001年   86篇
  2000年   66篇
  1999年   75篇
  1998年   50篇
  1997年   43篇
  1996年   39篇
  1995年   41篇
  1994年   42篇
  1993年   29篇
  1992年   30篇
  1991年   12篇
  1990年   21篇
  1989年   20篇
  1988年   9篇
  1987年   14篇
  1986年   8篇
  1985年   17篇
  1984年   9篇
  1983年   5篇
  1982年   13篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有7053条查询结果,搜索用时 15 毫秒
91.
摘要 目的:探讨电子计算机断层扫描(Computed Tomography,CT)与磁共振成像(Magnetic resonance imaging,MRI)扫描三维重建在四肢骨关节隐匿性骨折诊断中的应用。方法:2016年9月到2019年10月选择在本院诊治的下拟诊为四肢骨关节隐匿性骨折118例,所有患者都给予CT与MRI扫描三维重建诊断,记录影像学特征与判断诊断价值。结果:在118例患者中,最终确诊为四肢骨关节隐匿性骨折98例,无骨折20例,其中腕关节骨折34例,踝关节骨折22例,膝关节骨折15例,肘关节骨折15例,肩关节骨折8例,髋关节骨折4例。在98例确诊的四肢骨关节隐匿性骨折中,MRI三维重建显示双边征、骨质破坏、充气征、软组织影等比例显著都高于CT (P<0.05)。CT与MRI三维重建诊断四肢骨关节隐匿性骨折的敏感性为89.8 %和99.0 %,特异性为95.0 %和100.0 %,误诊率分别为9.3 %和0.8 %,MRI三维重建诊断的敏感性高于CT ,漏诊率低于CT。结论:CT与MRI扫描三维重建在四肢骨关节隐匿性骨折诊断中的应用都有很好的价值,特别是MRI三维重建能清晰显示骨折特征,具有更高的诊断敏感性,能减少漏诊率,可作为四肢骨关节隐匿性骨折的首选检查方法。  相似文献   
92.
摘要 目的:探讨动态对比增强磁共振(DCE-MRI)联合弥散加权成像(DWI)诊断直肠癌术前T、N分期和系膜淋巴结良恶性的价值。方法:收集2017年2月至2019年10月中国医科大学附属本溪中心医院和中国医科大学附属盛京医院接诊的80例直肠癌患者,均进行常规核磁共振成像(MRI)、DCE-MRI、DWI扫描,获得DCE-MRI、DWI定量参数[转运常数(K trans )、细胞外血管外空间的体积分数(V e )、速率常数(K ep )、表观扩散系数(ADC)],比较不同T、N分期、不同性质系膜淋巴结DCE-MRI、DWI参数,及其对T、N分期和系膜淋巴结性质的诊断效能。结果:直肠癌癌灶K trans 、 K ep 、V e 高于正常肠壁,ADC低于正常肠壁(P<0.05)。TNM分期为TⅢ~Ⅳ期的患者K trans 、 K ep 、V e 高于TⅠ~Ⅱ期,ADC低于TⅠ~Ⅱ期(P<0.05);TNM分期为N1期的患者K trans 、K ep 、V e 高于N0期,ADC低于N0期(P<0.05)。联合诊断的灵敏度、特异度、阳性预测值、阴性预测值较高。结论:DCE-MRI联合DWI对直肠癌术前T、N分期、系膜淋巴结性质诊断价值较高。  相似文献   
93.
Wildflower strips are a management practice increasingly used to provide floral resources to wild bees in agroecosystems. Yet, despite known spatiotemporal variation in wild bee communities, the degree to which different wildflower strip species consistently support wild bee communities is poorly understood. Additionally, whether such consistency is related to the functional roles wildflower species play (e.g., in supporting diverse, rare, or unique suites of bee species) has not been considered. Over three years and on four diversified farms, we evaluated spatiotemporal variation in wild bee communities and bee-flower interactions in wildflower strips to better understand the roles of flower strip species in supporting bees. We documented spatiotemporal variation in the abundance, richness, and composition of local wild bee communities. Certain wildflower species consistently supported the highest richness of wild bees across years. These wildflower species were regularly core members of the bee-flower interaction network, visited by both generalist and specialist bees. By contrast, wildflower species supporting the most unique suites of bees were variable in this role among farms. In order to select plant species for wildflower strips that consistently support a high diversity of wild bee communities within farm landscapes, it is useful to consider several different functional roles that plants may play. Whereas a handful of wildflower species may be visited by the majority of local wild bee species, achieving support for the remaining, and perhaps rarer, bee species will require planting additional flower species, which may appear redundant until the spatiotemporal variation in wild bee communities is more thoroughly considered. This functional approach to selecting wildflower species for bee conservation efforts is important for making practical recommendations to land managers and for guiding best management practices in different regions and with diverse management goals.  相似文献   
94.
Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC‐derived cortical neurons. We use transfection and transient expression of genetically‐encoded fluorescent markers to characterize the motility of Rab‐positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC‐derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers.  相似文献   
95.
CT and MRI are often used in the diagnosis and monitoring of stroke. However, they are expensive, time-consuming, produce ionizing radiation (CT), and not suitable for continuous monitoring stroke. Microwave imaging (MI) has been extensively investigated for identifying several types of human organs, including breast, brain, lung, liver, and gastric. The authors recently developed a holographic microwave imaging (HMI) algorithm for biological object detection. However, this method has difficulty in providing accurate information on embedded small inclusions. This paper describes the feasibility of the use of a multifrequency HMI algorithm for brain stroke detection. A numerical system, including HMI data collection model and a realistic head model, was developed to demonstrate the proposed method for imaging of brain tissues. Various experiments were carried out to evaluate the performance of the proposed method. Results of experiments carried out using multifrequency HMI have been compared with the results obtained from single frequency HMI. Results showed that multifrequency HMI could detect strokes and provide more accurate results of size and location than the single frequency HMI algorithm.  相似文献   
96.
IntroductionOur markerless tumor tracking algorithm requires 4DCT data to train models. 4DCT cannot be used for markerless tracking for respiratory-gated treatment due to inaccuracies and a high radiation dose. We developed a deep neural network (DNN) to generate 4DCT from 3DCT data.MethodsWe used 2420 thoracic 4DCT datasets from 436 patients to train a DNN, designed to export 9 deformation vector fields (each field representing one-ninth of the respiratory cycle) from each CT dataset based on a 3D convolutional autoencoder with shortcut connections using deformable image registration. Then 3DCT data at exhale were transformed using the predicted deformation vector fields to obtain simulated 4DCT data. We compared markerless tracking accuracy between original and simulated 4DCT datasets for 20 patients. Our tracking algorithm used a machine learning approach with patient-specific model parameters. For the training stage, a pair of digitally reconstructed radiography images was generated using 4DCT for each patient. For the prediction stage, the tracking algorithm calculated tumor position using incoming fluoroscopic image data.ResultsDiaphragmatic displacement averaged over 40 cases for the original 4DCT were slightly higher (<1.3 mm) than those for the simulated 4DCT. Tracking positional errors (95th percentile of the absolute value of displacement, “simulated 4DCT” minus “original 4DCT”) averaged over the 20 cases were 0.56 mm, 0.65 mm, and 0.96 mm in the X, Y and Z directions, respectively.ConclusionsWe developed a DNN to generate simulated 4DCT data that are useful for markerless tumor tracking when original 4DCT is not available. Using this DNN would accelerate markerless tumor tracking and increase treatment accuracy in thoracoabdominal treatment.  相似文献   
97.
Medical imaging using X-rays has been one of the most popular imaging modalities ever since the discovery of X-rays 125 years ago. With unquestionable benefits, concerns about radiation risks have frequently been raised. Computed tomography (CT) and fluoroscopic guided interventional procedures have the potential to impart higher radiation exposure to patients than radiographic examinations. Despite technological advances, there have been instances of increased doses per procedure mainly because of better diagnostic information in images. However, cumulative dose from multiple procedures is creating new concerns as effective doses >100 mSv are not uncommon. There is a need for action at all levels. Manufacturers must produce equipment that can provide a quality diagnostic image at substantially lesser dose and better implementation of optimization strategies by users. There is an urgent need for the industry to develop CT scanners with sub-mSv radiation dose, a goal that has been lingering. It appears that a new monochromatic X-ray source will lead to replacement of X-ray tubes all over the world in coming years and will lead to a drastic reduction in radiation doses. This innovation will impact all X-ray imaging and will help dose reduction. For interventional procedures, the likely employment of robotic systems in practice may drastically reduce radiation exposures to operators- but patient exposure will still remain an issue. Training needs always need to be emphasized and practiced.  相似文献   
98.
The article is mainly devoted to such representatives of gut microbiota as lactic acid bacteria and bifidobacteria, with minor accent on less frequently used or new probiotic microorganisms. Positive effects in treatment and prevention of diseases by different microbial groups, their metabolites and mechanisms of action, management and market of probiotic products are considered.  相似文献   
99.
In most dicotyledonous plants, leaf pavement cells exhibit complex jigsaw puzzle-like cell morphogenesis during leaf expansion. Although detailed molecular biological information and mathematical modeling of this jigsaw puzzle-like cell morphogenesis are now available, a full understanding of this process remains elusive. Recent reports have highlighted the importance of three-dimensional (3D) structures (i.e., anticlinal and periclinal cell wall) in understanding the mechanical models that describe this morphogenetic process. We believe that it is important to acquire 3D shapes of pavement cells over time, i.e., acquire and analyze four-dimensional (4D) information when studying the relationship between mechanical modeling and simulations and the actual cell shape. In this report, we have developed a framework to capture and analyze 4D morphological information of Arabidopsis thaliana cotyledon pavement cells by using both direct water immersion observations and computational image analyses, including segmentation, surface modeling, virtual reality and morphometry. The 4D cell models allowed us to perform time-lapse 3D morphometrical analysis, providing detailed quantitative information about changes in cell growth rate and shape, with cellular complexity observed to increase during cell growth. The framework should enable analysis of various phenotypes (e.g., mutants) in greater detail, especially in the 3D deformation of the cotyledon surface, and evaluation of theoretical models that describe pavement cell morphogenesis using computational simulations. Additionally, our accurate and high-throughput acquisition of growing cell structures should be suitable for use in generating in silico model cell structures.  相似文献   
100.
The use of synthetic antioxidants has been associated with serious concerns for human and environmental health. During ripening stages, tomato fruit is exposed to different abiotic stresses which not only influence its nutritional, mechanical, and functional properties at harvest, but also affect the quality and shelf life of the fruit during storage. This study investigated the pattern of changes in dietary antioxidants during various ripening stages of tomato fruit (cv. Red Rose) and their impact on storage behavior of the fruit during cold storage. Tomato fruits were harvested at mature green, breaker, turning, pink, light-red and red stages of maturity. Then, they were analysed for flesh firmness, soluble solids content, titratable acidity, total sugars, pH, dry matter content, lipophilic (lycopene, β-carotene, and total carotenoids), and hydrophilic (ascorbic acid, phenolic and flavonoids) antioxidants. Additional fruits were harvested at each maturity stage and divided into three equal lots, then were subjected to low-temperature (10 ± 1 °C) storage with 80 ± 5% RH, for 7, 14, and 21 days. Flesh firmness, and the levels of dietary antioxidants were analysed following the subsequent storage periods. The results revealed that the peak of hydrophilic antioxidants such as ascorbic acid, phenolic compounds, and flavonoids was between the ‘pink’ and the ‘light-red’ stages of fruit maturity. Whereas tomatoes harvested at the ‘red’ stage of maturity had the highest levels of lycopene and β-carotene. Both the stage of fruit maturity at harvest and duration of cold storage influenced flesh firmness, organoleptic and functional properties of ‘Red Rose’ tomato fruit. In conclusion, the results of the current investigation have practical implications in formulating foods with improved functional properties at processing industries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号