首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   142篇
  国内免费   10篇
  2024年   2篇
  2023年   16篇
  2022年   23篇
  2021年   44篇
  2020年   52篇
  2019年   37篇
  2018年   38篇
  2017年   35篇
  2016年   42篇
  2015年   30篇
  2014年   60篇
  2013年   73篇
  2012年   35篇
  2011年   56篇
  2010年   29篇
  2009年   34篇
  2008年   24篇
  2007年   34篇
  2006年   31篇
  2005年   24篇
  2004年   22篇
  2003年   13篇
  2002年   17篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1985年   4篇
  1984年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有830条查询结果,搜索用时 296 毫秒
101.
We previously reported that apolipoprotein M (apoM) expression is reduced in ob/ob mice. Whether such a reduction is specific for this model or is a more general phenomenon in diabetes models is not known. In the present study, we therefore investigated apoM expression and secretion in NMRI mice rendered diabetes through administration of alloxan (120 mg/kg). Plasma glucose levels were markedly increased and plasma insulin levels markedly reduced at 3 days after alloxan. At the same time, that plasma apoM concentrations were decreased by 70%, apoM mRNA levels in liver was decreased by 40%, and apoM mRNA in kidney was decreased by 20% in alloxan-treated mice compared to saline-injected controls. Furthermore we found also that daily sc administration of insulin (5 IU/kg per day) increased plasma apoM levels, and apoM mRNA levels in liver and kidney. We therefore conclude that apoM is reduced in this diabetes model and that exogenous insulin administrations partially reverses the abnormal apoM expression. Based on these results, we suggest that insulin regulates apoM synthesis in vivo and, therefore, that the reduction of apoM expression is a general phenomenon in diabetes models.  相似文献   
102.
Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene have been associated with the development of diabetic retinopathy (DR) in patients with type 1 diabetes mellitus (T1DM), but not with T2DM. However, no previous study has analyzed combinations of genetic markers (haplotypes), which can be more informative. We studied three eNOS genetic polymorphisms: a single nucleotide polymorphism in the promoter region (T(-786)C), in exon 7 (Glu298Asp), and a variable number of tandem repeats in intron 4 (b/a) in 103 healthy controls, and in 170 patients with T2DM (without DR, N=114; with DR, N=56). We also examined the association of eNOS gene haplotypes with T2DM and with DR. No differences were found in the frequencies of genotypes and alleles of the three polymorphisms among the three groups of subjects. However, the "C-Glu-b" haplotype was more common in healthy controls (24%) than in T2DM patients (7%) (P=0.0001). Finally, no significant difference in the distribution of eNOS haplotypes frequencies was found when T2DM patients with or without DR were compared (P=0.7372). These findings suggest no association between DR and individual eNOS haplotypes in T2DM patients. The "C-Glu-b" haplotype, however, may have a protective effect against T2DM. Further studies should be conducted to address the molecular basis for such an effect.  相似文献   
103.
Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.  相似文献   
104.
Fu Z  Kuang HY  Hao M  Gao XY  Liu Y  Shao N 《Peptides》2012,37(1):25-31
Exendin-4 is a peptide resembling glucagon-like peptide-1 (GLP-1), which has protective effects on nerve cells. However, the effects of Exendin-4 on retinal ganglion cells (RGC) are still under clear. The purpose of the present study is to demonstrate that exenatide prevents high- or low-glucose-induced retinal ganglion cell impairment. We observed the expression of GLP-1R in RGC-5 cells by immunofluorescence and Western blot. To investigate the effect of exenatide on RGC-5 cells incubated different glucose concentrations, CCK-8 measured the survival rates and electron microscopy detected cellular injury. The expression levels of Bcl-2 and Bax were analyzed by immunocytochemistry and Western blot. Exenatide protects RGC-5 from high- or low-glucose-induced cellular injury and the optimum concentration was 0.5μg/ml. Exenatide can inhibit high- or low-glucose-induced mitochondrial changes. Exenatide protects RGC-5 from high- or low-glucose-induced Bax increased and Bcl-2 decreased. Furthermore, the protective effect of exenatide could be inhibited by Exendin (9-39). These findings indicate that exenatide shows a neuroprotective effect for different glucose concentrations-induced RGC-5 cells injury. Exenatide could protect RGC-5 cells from degeneration or death, which may protect retinal function and have a potential value for patients with diabetic retinopathy.  相似文献   
105.
Exenatide (exendin-4 analogue) is widely used in clinics and shows a neuroprotective effect. The main objectives of the present study were to prove that retinal ganglion cells (RGC-5) express GLP-1R, to ascertain whether exenatide prevents a high-glucose-induced RGC-5 impairment, to determine the appropriate concentration of exenatide to protect RGC-5 cells, and to explore the neuroprotective mechanisms of exenatide. Immunofluorescence and Western blot analyses demonstrated that RGC-5 cells express GLP-1R. We incubated RGC-5 cells with 25 mM glucose prior to incubation with either 25 mM glucose, 55 mM glucose (high), high glucose plus exenatide or high glucose plus a GLP-1R antagonist. The survival rates of the cells were measured by CCK-8, and cellular injury was detected by electron microscopy. There were statistical differences between the high-glucose group and the control group (P<0.05). Exenatide improved the survival rate of the cells and suppressed changes in the mitochondrial morphology. The optimum concentration of exenatide to protect the RGC-5 cells from high-glucose-induced RGC injury was 0.5 μg/ml, and this protective effect could be inhibited by exendin (9-39). To further study the mechanism underlying the beneficial effects of exenatide, the expression levels of cytochrome c, Bcl-2, Bax and caspase-3 were analysed by Western blot. The present study showed that treatment with exenatide significantly inhibited cytochrome c release and decreased the intracellular expression levels of Bax and caspase-3, whereas Bcl-2 was increased (P<0.05). These results suggested that GLP-1R activation can inhibit the cellular damage that is induced by high glucose. A mitochondrial mechanism might play a key role in the protective effect of exenatide on the RGC-5 cells, and exenatide might be beneficial for patients with diabetic retinopathy.  相似文献   
106.
The number of people suffering from diabetes is hastily increasing and the condition is associated with altered brain glucose homeostasis. Brain glycogen is located in astrocytes and being a carbohydrate reservoir it contributes to glucose homeostasis. Furthermore, glycogen has been indicated to be important for proper neurotransmission under normal conditions. Previous findings from our laboratory suggested that glucose metabolism was reduced in type 2 diabetes, and thus we wanted to investigate more specifically how brain glycogen metabolism contributes to maintain energy status in the type 2 diabetic state. Also, our objective was to elucidate the contribution of glycogen to support neurotransmitter glutamate and GABA homeostasis. A glycogen phosphorylase (GP) inhibitor was administered to Sprague-Dawley (SprD) and Zucker Diabetic Fatty (ZDF) rats in vivo and after one day of treatment [1-13C]glucose was used to monitor metabolism. Brain levels of 13C labeling in glucose, lactate, alanine, glutamate, GABA, glutamine and aspartate were determined. Our results show that inhibition of brain glycogen metabolism reduced the amounts of glutamate in both the control and type 2 diabetes models. The reduction in glutamate was associated with a decrease in the pyruvate carboxylase/pyruvate dehydrogenase ratio in the control but not the type 2 diabetes model. In the type 2 diabetes model GABA levels were increased suggesting that brain glycogen serves a role in maintaining a proper ratio between excitatory and inhibitory neurotransmitters in type 2 diabetes. Both the control and the type 2 diabetic states had a compensatory increase in glucose-derived 13C processed through the TCA cycle following inhibition of glycogen degradation. Finally, it was indicated that the type 2 diabetes model might have an augmented necessity for compensatory upregulation at the glycolytic level.  相似文献   
107.
Diabetic retinopathy represents the most common causes of vision loss in patients affected by diabetes mellitus. The cause of vision loss in diabetic retinopathy is complex and remains incompletely understood. One of the earliest changes in the development of retinopathy is the accelerated apoptosis of retinal microvascular cells and the formation of acellular capillaries by unknown mechanism. Results of a recent research suggest an important role of matrix metalloproteinases (MMPs) in the development of diabetic retinopathy. MMPs are a large family of proteinases that remodel extracellular matrix components, and under pathological condition, its induction is considered as a negative regulator of cell survival; and in diabetes, latent MMPs are activated in the retina and its capillary cells, and activation of MMP-2 and -9 induces apoptosis of retinal capillary cells. This review will focus on the MMP-2 and MMP-9 in the diabetic retina with special reference to oxidative stress, mitochondria dysfunction, inflammation and angiogenesis, as well as summarizing the current information linking these proteins to pathogenesis of diabetic retinopathy.  相似文献   
108.
目的:探讨离子导入疗法对糖尿病视网膜病变患者进行护理的临床效果。方法:选取88例(122眼)糖尿病视网膜病变患者,随机分为照组和实验组,其中对照组44例(58眼),给予常规护理治疗;实验组44例(64眼),在对照组基础上采用离子导入疗法进行护理。观察患者视网膜改变、视力的改善及自觉症状改善情况。结果:实验组实施干预后,视网膜改变、视力的改善、自觉症状的改善显效率明显高于对照组,差异有统计学意义(P〈0.01)。结论:离子导入疗法有助于改善糖尿病视网膜病变患者眼底血液循环。促进出血点吸收、改善临床症状,操作简单易行,患者易于接受。  相似文献   
109.
Age-related cataract is clinically and genetically heterogeneous disorder affecting the ocular lens, and the leading cause of vision loss and blindness worldwide. Here we screened nonsynonymous single nucleotide polymorphisms (nsSNPs) of a novel gene, EPHA2 responsible for age related cataracts. The SNPs were retrieved from dbSNP. Using I-Mutant, protein stability change was calculated. The potentially functional nsSNPs and their effect on protein was predicted by PolyPhen and SIFT respectively. FASTSNP was used for functional analysis and estimation of risk score. The functional impact on the EPHA2 protein was evaluated by using SWISSPDB viewer and NOMAD-Ref server. Our analysis revealed 16 SNPs as nonsynonymous out of which 6 nsSNPs, namely rs11543934, rs2291806, rs1058371, rs1058370, rs79100278 and rs113882203 were found to be least stable by I-Mutant 2.0 with DDG value of > -1.0. nsSNPs, namely rs35903225, rs2291806, rs1058372, rs1058370, rs79100278 and rs113882203 showed a highly deleterious tolerance index score of 0.00 by SIFT server. Four nsSNPs namely rs11543934, rs2291806, rs1058370 and rs113882203 were found to be probably damaging with PSIC score of ≥ 2. 0 by Polyp hen server. Three nsSNPs namely, rs11543934, rs2291806 and rs1058370 were found to be highly polymorphic with a risk score of 3-4 with a possible effect of Non-conservative change and splicing regulation by FASTSNP. The total energy and RMSD value was higher for the mutant-type structure compared to the native type structure. We concluded that the nsSNP namely rs2291806 as the potential functional polymorphic that is likely to have functional impact on the EPHA2 gene.  相似文献   
110.
糖尿病微血管病变严重影响了患者生活质量,是患者致死致残主要原因。微血管病变主要表现在视网膜、肾、神经、心肌组织。微血管病变的机制尚未完全清楚,近年越来越多研究发现血管内皮祖细胞(endothelial progenitor cells,EPCs)是该病发病重要原因。EPCs有分化为成熟的内皮细胞并且参与新血管形成和新生的能力。正常情况下内皮损失和EPCs对内皮的修复作用处于动态平衡状态,一旦EPCs受损,内皮损害和修复之间的平衡被打破,内皮层的完整性遭到破坏,必然参与糖尿病血管病变的发生发展。国内外大量研究证明糖尿病合并大血管病变EPCs数目功能改变,而糖尿病合并微血管病变EPCs的怎样变化?本文就EPCs与糖尿病微血管病变的关系进行系统综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号