首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   7篇
  国内免费   4篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   7篇
  2009年   10篇
  2008年   14篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
11.
The Common Hamster (Cricetus cricetus L.)has suffered from changes in agriculturalpractices. In some Western European countriesthe populations have become so small andscattered that they are threatened withextinction. We studied the genetic diversity ofmitochondrial and major histoincompatibilitycomplex (MHC) loci in the few animals left inthe South of the Netherlands and in threeanimals from the Alsace region in France, andcompared it to the diversity in Dutch animalsin the past (samples taken from stuffed animalsin museum collections dating back to the period1924–1956) and in a large present-daypopulation from Czech Republic. For themitochondrial cytochrome b gene, SNP mappingdemonstrated a total of nine alleles among 14Czech samples, of which one (possibly two) waspresent in the Dutch museum samples, and onlyone in the current Dutch animals. For the MHCgenes, DQA exon 2 and 3 showed no variation,while 14 different alleles were found at DRBexon 2. The Czech population contained 13different alleles in 15 animals sampled, andmost animals were heterozygous (Ho = 0.80,He = 0.91). Therefore, the solitary livingHamster maintains, in nature, a large diversityat this MHC locus. The Dutch museum samplescontained eight different alleles in 20 samples, and they were slightly less heterozygous (Ho = 0.60, He = 0.75). All but one ofthese alleles were also found in the Czechsamples. In contrast, the present Dutch andFrench animals (a total of 16 samples)contained only one of these alleles, and allanimals were genetically identical andhomozygous. We conclude that the remaininganimals have lost all diversity at this MHClocus. This is probably the result of a severebottleneck, which may have been quite severe,reducing diversity in many loci. In addition,the remaining Dutch animals are partly derivedfrom one family. These animals are now part ofa breeding program. Options for restocking thegenetic diversity are discussed.  相似文献   
12.
13.
The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2α, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2β, noncatalytic subunit of CK2). CK2α belongs to the superfamily of eukaryotic protein kinases (EPKs). To function as regulatory key components, EPKs normally exist in inactive ground states and are activated only upon specific signals. Typically, this activation is accompanied by large conformational changes in helix αC and in the activation segment, leading to a characteristic arrangement of catalytic key elements. For CK2α, however, no strict physiological control of activity is known. Accordingly, CK2α was found so far exclusively in the characteristic conformation of active EPKs, which is, in this case, additionally stabilized by a unique intramolecular contact between the N-terminal segment on one side, and helix αC and the activation segment on the other side. We report here the structure of a C-terminally truncated variant of human CK2α in which the enzyme adopts a decidedly inactive conformation for the first time. In this CK2α structure, those regulatory key regions still are in their active positions. Yet the glycine-rich ATP-binding loop, which is normally part of the canonical anti-parallel β-sheet, has collapsed into the ATP-binding site so that ATP is excluded from binding; specifically, the side chain of Arg47 occupies the ribose region of the ATP site and Tyr50, the space required by the triphospho moiety. We discuss some factors that may support or disfavor this inactive conformation, among them coordination of small molecules at a remote cavity at the CK2α/CK2β interaction region and binding of a CK2β dimer. The latter stabilizes the glycine-rich loop in the extended active conformation known from the majority of CK2α structures. Thus, the novel inactive conformation for the first time provides a structural basis for the stimulatory impact of CK2β on CK2α.  相似文献   
14.
Major histocompatibility complex (MHC) class II DRB genotypes were examined in two geographically isolated populations of California sea lions (Zalophus californianus) (Gulf of California and California coastal Pacific Ocean). Genomic DNA from 227 California sea lions was examined using eight sequence-specific primer (SSP) pairs flanking the putative peptide-binding site. A total of 40 different Zaca-DRB genotype configurations were identified among the 227 individuals. Using SSP-PCR, significant differences were found between coastal California and Gulf of California Zalophus populations in numbers of DRB sequences per individual and configuration of sequences within individuals. Additionally, unique local patterns of MHC diversity were identified among the Midriff Island animals. These population differences are consistent with either ecologically distinct patterns of selection pressures and/or geographical isolation. The consequences of these partitioned MHC configurations at the population level are as yet unknown; however, the worldwide increase in emerging marine diseases lends urgency to their examination.  相似文献   
15.
The Ainu people are considered to be the descendants of preagricultural native populations of northern Japan, while the majority of the population of contemporary Japan (Wajin) is descended mainly from postneolithic migrants. Polymorphisms of the HLA-DRB1, DRB3, and DQB1 alleles were investigated in DNA samples of 50 Ainu living in Hidaka district, Hokkaido. Unique features of the Ainu in this study were high incidences of DRB1*1401, DRB1*1406, and a newly described allele, DRB1*1106 (20%, 17%, and 5%, respectively). On the other hand, several common alleles in Wajin (DRB1*1502, 1302, 0803, and 1501) were found at relatively low frequencies (1–2%) in Ainu. Previously DRB1*1406 was described as a characteristic allele of some Native American or northeast Asian ethnic groups, and DRB1*1106 had been found in only two Singapore Chinese and one Korean. Principal component analysis of various populations based on HLA class II allele frequencies places the Ainu population midway between other east Asian populations, including Wajin, and Native Americans. These observations may support the hypothesis that the Ainu people are the descendants of some Upper Paleolithic populations of northeast Asia from which Native Americans are also descended. © 1996 Wiley-Liss, Inc.  相似文献   
16.
17.
The DRB1 intron 2 (GT)n (GA)m microsatellite was genotyped in experimental flocks of seven Merinoland rams and 249 ewes as well as their offspring (381 lambs) from consecutive lambings. A total of 16 DRB1 alleles were detected, ranging between 353 and 857 bp. In comparison with carriers of other alleles, the ewes carrying the predominant 411 bp allele had higher values of all the recorded fertility traits. For ewes carrying the 394 and 857 bp alleles, the birth weight of lambs was about 400 g higher as compared to the residual group of ewes. The observed associations could be due to differences in disease resistance, cell recognition or tissue differentiation between carriers of various MHC haplotypes which can in turn affect individual fertility and growth performance.  相似文献   
18.
19.
The major histocompatibility complex (MHC) is a cluster of genes involved in vertebrate immune response regulation. MHC class I and II cell surface proteins are crucial for discrimination of self versus non-self by the adaptive immune system. Due to their special phylogenetic position within the Euarchontoglires and as a relative of primates, tree shrews have been proposed as an alternative experimental animal model for biomedical studies. However, information about the genetic structure of the tree shrew populations is largely unknown. In this study, we characterized diversity in exon 2 of the MHC II DRB gene isolated from Chinese tree shrews (Tupaia belangeri chinensis). We identified 12 different DRB exon 2 alleles from 15 Chinese tree shrews, 1 to 4 alleles were observed per individual with high levels of sequence divergence between alleles. There were more non-synonymous than synonymous substitutions in the functionally important antigen-binding site (dN/dS = 2.7952, P < 0.01), indicating that the DRB exon 2 in Chinese tree shrews has been influenced by positive selection.  相似文献   
20.
 One of the most common cattle major histocompatibility complex DRB3 alleles, * 0201, includes a deletion of codon 65 encoding one residue in the α-helical chain. The mutation is functionally interesting and is likely to influence peptide binding. Exon 2 of two additional del65 alleles, * 3301 and * 4101, have now been sequenced with the aim to investigate the evolutionary relationship of this allelic group. Despite a fairly large genetic distance between the three alleles (11–17 nucleotide substitutions causing 8–11 amino acid substitutions) we found clear indications of a common ancestry. The α-helical region was very similar or identical among the alleles whereas the β-strand region was quite divergent. The results indicated that interallelic recombination has contributed to the diversification of the del65 group. Deletion of codon 65 has also been found in a roe deer DRB1 allele and a cattle DQB3 allele. Sequence comparisons of the cattle and roe deer DRB del65 alleles refuted the possibility of a trans-species persistence of a del65 allelic lineage but the two species may share a short ancestral sequence motif including del65. In addition to del65, the cattle DQB3 allele did not show any striking sequence similarities to the DRB alleles. Received: 20 March 1997 / Revised: 17 June 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号