首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   1篇
  国内免费   11篇
  2023年   4篇
  2022年   12篇
  2021年   5篇
  2020年   6篇
  2019年   14篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   22篇
  2014年   46篇
  2013年   44篇
  2012年   15篇
  2011年   31篇
  2010年   24篇
  2009年   40篇
  2008年   43篇
  2007年   34篇
  2006年   16篇
  2005年   36篇
  2004年   27篇
  2003年   26篇
  2002年   21篇
  2001年   11篇
  2000年   8篇
  1999年   12篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   7篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1970年   1篇
  1952年   1篇
排序方式: 共有562条查询结果,搜索用时 15 毫秒
31.
A new series of steroidal dihydrocarbothioic acid amido pyrazole analogues were synthesized, and after characterization, evaluation for cytotoxicity, comet assay and western blotting was carried out. The synthesis of these analogues is convenient and involves two steps, i.e. aldol condensation as first step followed by nucleophilic addition of thiosemicarbazide across α, β-unsaturated carbonyl as a later step. Quantitative yields of more than 80 % are obtained in both the steps. After characterization by IR, 1H NMR, 13C NMR, MS and analytical data, all the compounds of both series were tested for cytotoxic activity against a panel of different human cancer cell lines by MTT assay, during which compound 3e, 3f, 4e, 4f and 4h are very potent especially against HepG2 and MCF-7 cancer cell lines. Cell cycle analysis depicted the cell death in S-phase while as annexin V-FITC/PI analysis showed that compounds effectively induce apoptosis. Apoptotic degradation of DNA of MCF-7 cells in the presence of different steroidal derivatives was analysed by agarose gel electrophoresis and visualized by ethidium bromide staining (comet assay). In western blotting analysis, the relative expressions of relevant apoptotic markers depicted an apoptosis by steroidal dihydropyrazole in MCF-7 cancer cells.  相似文献   
32.
During our research on apelin receptor (APJ) signalling in living cells with BRET and FRET, we demonstrated that apelin-13 stimulation can lead to the activation of Gαi2 or Gαi3 through undergoing a molecular rearrangement rather than dissociation in HEK293 cells expressing APJ. Furthermore, Gαo and Gαq also showed involvement in APJ activation through a classical dissociation model. However, both FRET signal and BRET ratio between fluorescent Gαi1 subunit and Gβγ subunits demonstrated little change after apelin-13 stimulation. These results demonstrated that stimulation of APJ with apelin-13 causes activation of Gαi2, Gαi3, Gαo, Gαq; among which Gαi2, Gαi3 were activated through a novel rearrangement process. These results provide helpful data for understanding APJ mediated G-protein signalling.  相似文献   
33.
Aflatoxin B1 (AFB1) is among the most potent naturally occurring carcinogens and classified as a group I carcinogen. Since the ingestion of aflatoxin-contaminated food is associated with several liver diseases, the aim of the present study was to evaluate the effect of 2, 20, and 200 ppb of AFB1 on DNA damage in peripheral blood lymphocytes and liver cells in Dunkin-Hartley guinea pigs. The animals were divided into four groups according to the given diet. After the treatment the lymphocytes and liver cells were isolated and DNA damage determined by Comet assay. The levels of DNA damage in lymphocytes were higher animals treated with 200 ppb of AFB1-enriched diet (P = 0.02). In the liver cells there were a relationship between the levels of DNA damage and the consumption of AFB1 in all studied groups. These results suggest that Comet assay performed on lymphocytes is a valuable genotoxic marker for high levels of exposure to AFB1 in guinea pig. Additionally our results indicate that the exposure to this toxin increases significantly and increases the level of DNA damage in liver cells, which is a key step on liver cancer development. We also suggest that the Comet assay is an useful tool for monitoring the genotoxicity of AFB1 in liver.  相似文献   
34.
两种测试方法对DPPH分光光度法测试结果的影响   总被引:5,自引:0,他引:5  
目的:比较固定反应时间法和动力学监测法的准确性。方法:用固定反应时间法和动力学监测法分别测定维生素C(Vc)、二丁基羟基甲苯(BHT)对二苯代苦味酰自由基(DPPH)的清除作用,通过F检验和t检验来揭示两种方法的差异。结果:通过动力学监测法得到的测试结果更能准确的反映测试样品对DPPH自由基的清除能力。结论:建议在用DPPH分光光度法过程中使用动力学监测法。  相似文献   
35.
Genistein-8-C-glucoside (G8CG) belongs to isoflavones, which are a subclass of flavonoids, a large group of polyphenolic compounds widely distributed in plants. A number of studies on flavonoids show their cardioprotective and antiosteoporosis properties in in vitro and in vivo models. As a phytoestrogen, genistein has recently generated interest as a potential anticancer and antiatherogenic agent. Several flavonoids are known as antioxidants and scavengers of free oxygen radicals. In the current investigation we used glycosylated genistein (genistein-8-C-glucoside) from flowers of lupine (Lupinus luteus L.). Many authors have found that the action of genistein is not so simple, although many reports conducted in vitro have demonstrated that it is cytotoxic and genotoxic. Therefore, the cytotoxic and genotoxic effects of this compound in Chinese hamster ovary cells (line CHO) were studied. A colorimetric MTT assay to assess cytotoxicity and a Comet assay for the detection of DNA damage were used. Apoptosis was determined by the Hoechst 33258/propidium iodide staining technique. We have also demonstrated antioxidant properties of G8CG. The level of reactive oxygen species generated by G8CG alone and/or H2O2 was evaluated with fluorescence probes: dichlorofluorescein-diacetate (DCFDA) by flow cytometry. The cells were exposed to various concentrations of genistein-8-C-glucoside (1-290 microM) and hydrogen peroxide (10-130 microM) and the effect of G8CG alone or in combination with H2O2 was determined. The results reveal that G8CG at concentrations higher than 10 microM significantly reduced cell viability, induced apoptosis and DNA damage. However at lower concentrations (5 and 7.5 microM), G8CG showed antioxidant properties, but had no cytotoxic or genotoxic activity.  相似文献   
36.
The potential reactivity and structural properties of oxiranes (epoxides) are advantageous when considering polymers for medical devices. However, epoxy compounds are widely known to have genotoxic properties. The objective of the study was to evaluate the cytotoxicity and primary DNA damage effects induced by oxiranes and siloranes, silicon containing oxiranes. The siloranes, Ph-Sil, Tet-Sil, and Sil-Mix and the oxiranes Cyracure™ UVR-6105 and 1,3-bis[2-(2-oxiranylmethyl) phenoxy]pentane (OMP-5) were dissolved in organic solvents and dilutions containing less than 0.5% solvent were used in biological assays. The concentration that reduced the viability of 50% (TC50) of L929 cells was measured using the MTT assay and guided the selection of subtoxic doses for evaluation of DNA damage. Ph-Sil was more cytotoxic than OMP-5, Cyracure™ UVR-6105 and Sil-Mix. However, the TC50 value of Tet-Sil could not be determined due to its poor solubility. DNA damage was evaluated in the sister chromatid exchange (SCE) assay with CHO cells, and the alkaline comet assay with L929 cells. In contrast to the siloranes, the oxiranes exhibited significant increases (p > 0.05) in SCE frequencies and DNA migration relative to their solvent controls. Our findings support previous reports that siloranes have low genotoxic potential and can be suitable components for development of biomaterials.  相似文献   
37.
The sister chromatid exchange (SCE) frequency, the cell-cycle progression analysis, and the single cell gel electrophoresis technique (SCGE, comet assay) were employed as genetic end-points to investigate the geno- and citotoxicity exerted by dicamba and one of its commercial formulation banvel® (dicamba 57.71%) on Chinese hamster ovary (CHO) cells. Log-phase cells were treated with 1.0–500.0 μg/ml of the herbicides and harvested 24 h later for SCE and cell-cycle progression analyses. All concentrations assessed of both test compounds induced higher SCE frequencies over control values. SCEs increased in a non-dose-dependent manner neither for the pure compound (r = 0.48; P > 0.05) nor for the commercial formulation (r = 0.58, P > 0.05). For the 200.0 μg/ml and 500.0 μg/ml dicamba doses and the 500.0 μg/ml banvel® dose, a significant delay in the cell-cycle progression was found. A regression test showed that the proliferation rate index decreased as a function of either the concentration of dicamba (r = −0.98, P < 0.05) or banvel® (r = −0.88, P < 0.01) titrated into cultures in the 1.0–500.0 μg/ml dose-range. SCGE performed on CHO cells after a 90 min pulse-treatment of dicamba and banvel® within a 50.0–500.0 μg/ml dose-range revealed a clear increase in dicamba-induced DNA damage as an enhancement of the proportion of slightly damaged and damaged cells for all concentrations used (P < 0.01); concomitantly, a decrease of undamaged cells was found over control values (P < 0.01). In banvel®-treated cells, a similar overall result was registered. Dicamba induced a significant increase both in comet length and width over control values (P < 0.01) regardless of its concentration whereas banvel® induced the same effect only within 100.0–500.0 μg/ml dose range (P < 0.01). As detected by three highly sensitive bioassays, the present results clearly showed the capability of dicamba and banvel® to induce DNA and cellular damage on CHO cells.  相似文献   
38.
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified.Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents.  相似文献   
39.

Background

Haemophilus influenzae is an opportunistic bacterial pathogen that exclusively colonises humans and is associated with both acute and chronic disease. Despite its clinical significance, accurate identification of H. influenzae is a non-trivial endeavour. H. haemolyticus can be misidentified as H. influenzae from clinical specimens using selective culturing methods, reflecting both the shared environmental niche and phenotypic similarities of these species. On the molecular level, frequent genetic exchange amongst Haemophilus spp. has confounded accurate identification of H. influenzae, leading to both false-positive and false-negative results with existing speciation assays.

Results

Whole-genome single-nucleotide polymorphism data from 246 closely related global Haemophilus isolates, including 107 Australian isolate genomes generated in this study, were used to construct a whole-genome phylogeny. Based on this phylogeny, H. influenzae could be differentiated from closely related species. Next, a H. influenzae-specific locus, fucP, was identified, and a novel TaqMan real-time PCR assay targeting fucP was designed. PCR specificity screening across a panel of clinically relevant species, coupled with in silico analysis of all species within the order Pasteurellales, demonstrated that the fucP assay was 100 % specific for H. influenzae; all other examined species failed to amplify.

Conclusions

This study is the first of its kind to use large-scale comparative genomic analysis of Haemophilus spp. to accurately delineate H. influenzae and to identify a species-specific molecular signature for this species. The fucP assay outperforms existing H. influenzae targets, most of which were identified prior to the next-generation genomics era and thus lack validation across a large number of Haemophilus spp. We recommend use of the fucP assay in clinical and research laboratories for the most accurate detection and diagnosis of H. influenzae infection and colonisation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1857-x) contains supplementary material, which is available to authorized users.  相似文献   
40.
Single-cell gel electrophoresis (comet assay) is one of the most common methods used to measure oxidatively damaged DNA in peripheral blood mononuclear cells (PBMC), as a biomarker of oxidative stress in vivo. However, storage, extraction, and assay workup of blood samples are associated with a risk of artifactual formation of damage. Previous reports using this approach to study DNA damage in PBMC have, for the most part, required the isolation of PBMC before immediate analysis or freezing in cryopreservative. This is very time-consuming and a significant drain on human resources. Here, we report the successful storage of whole blood in ~ 250 μl volumes, at − 80 °C, without cryopreservative, for up to 1 month without artifactual formation of DNA damage. Furthermore, this blood is amenable for direct use in both the alkaline and the enzyme-modified comet assay, without the need for prior isolation of PBMC. In contrast, storage of larger volumes (e.g., 5 ml) of whole blood leads to an increase in damage with longer term storage even at − 80 °C, unless a cryopreservative is present. Our “small volume” approach may be suitable for archived blood samples, facilitating analysis of biobanks when prior isolation of PBMC has not been performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号