首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   43篇
  国内免费   229篇
  2023年   11篇
  2022年   22篇
  2021年   15篇
  2020年   26篇
  2019年   39篇
  2018年   19篇
  2017年   33篇
  2016年   34篇
  2015年   29篇
  2014年   27篇
  2013年   33篇
  2012年   27篇
  2011年   35篇
  2010年   19篇
  2009年   66篇
  2008年   48篇
  2007年   50篇
  2006年   43篇
  2005年   34篇
  2004年   33篇
  2003年   40篇
  2002年   20篇
  2001年   14篇
  2000年   19篇
  1999年   15篇
  1998年   9篇
  1997年   4篇
  1996年   12篇
  1995年   10篇
  1994年   6篇
  1993年   2篇
  1992年   8篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   9篇
  1985年   11篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有859条查询结果,搜索用时 31 毫秒
61.
A regional ecological risk assessment was conducted for the Kaipara Harbour catchment in New Zealand. The Relative Risk Model was used to prioritize management of the sources of stress and habitats of concern in the basin. Semi-structured interviews with 25 representative stakeholders were conducted to obtain the resource-users’ perspectives and to identify the regional stressor sources and receptor habitat data for the model. For this risk analysis we divided the catchment into nine ecological districts. Mixed-methodological approaches including content analysis, geospatial analysis, and source documentation were used to categorize source and habitat rankings, based on the relative abundance of each in the nine ecological districts. Risk characterization revealed that fishing pressure and tidal energy pose the largest sources of perceived risk to the catchment; shellfish and Maui dolphin habitats are the receptors estimated to be at greatest risk; and the Kaipara and Rodney ecological districts are the sub-regions estimated with the greatest combined risk. A Monte Carlo analysis confirmed the source inputs and revealed greater uncertainty than the estimated habitat input results. The results of this assessment can be used by policy-makers, conservation groups, and municipalities to inform the future management efforts in the harbor and catchment.  相似文献   
62.
63.
Bar-built estuaries are generally found at the mouths of smaller watersheds with seasonal precipitation, episodic streamflow and seasonal swell dynamics. Low streamflows and constructive wave forces form a sand bar at the mouth isolating the stream from the ocean, creating a ponded lagoon, and inundating the surrounding marsh plain. Bar-built estuaries are wide spread in California comprising over 50 percent of California's more than 500 estuaries. By connecting terrestrial, freshwater, and marine realms bar-built estuaries are complex and dynamic providing great habitat and ecosystem services. California has suffered some of the highest losses of wetland habitats, and the wetland habitats of bar-built estuaries continue to be threatened by further development, pollution, and climate related changes including diminished streamflows and sea level rise. Given this loss and threat we developed a California Rapid Assessment Method (CRAM) to assess the condition of California's bar-built estuaries. CRAM uses visual indicators to accurately reflect current wetland condition with regards to buffer habitat, hydrology, physical complexity, plant diversity and structure, and landscape influences. Here we validate this method by comparing results of CRAM for bar-built estuaries to other accepted measures of wetland condition that we simultaneously collected with CRAM including vegetative surveys, water nutrient levels, and GIS landscape scale measures of stress for 32 sites throughout California. CRAM correlated well with each of these three independent methods of assessing condition. Notably, the Environmental Monitoring and Assessment Program (EMAP) number of natives metric significantly correlated with CRAM Index and all Attribute scores. The strong correlations of CRAM to nutrient levels is particularly important considering the documentation of the negative impact of nutrients on fish populations, the use of bar-built estuaries by juveniles of commercially important species, and the nursery role of bar-built estuaries for maintaining imperiled populations of species such as steelhead. GIS measured percent impervious, percent agriculture, and percent dams all correlated well with expected CRAM Attribute scores at appropriate watershed scales relative to the area of inference for each CRAM metric. Further, CRAM for bar-built estuaries works well throughout California's diversity of environmental conditions and regardless of geography, timing, or whether the bar was open or closed during the survey. We hope that the availability of CRAM combined with available data repositories will enable local, state, and federal decision makers to better manage, restore, and conserve valuable bar-built estuaries in the face of continual threats like development, drought, and sea level rise.  相似文献   
64.
Question: Although mangrove forests are generally regarded as highly threatened, some studies have shown that mangrove canopies in the Pacific coast of Mexico have been increasing in recent decades. We investigated the possible causes driving this reported mangrove expansion. Location: The mangrove lagoons of Magdalena Bay in Baja California, Mexico. Methods: We used 50‐year‐old aerial photographs and 24‐year‐old satellite images to compare long‐term vegetation change, surveyed a coastal vegetation transect to analyse flooding levels, compiled six decades of tidal and oceanographic information, as well as hurricane data to analyse changes in storm frequency or sea‐level conditions, and used isotopic analysis to date the age of trees along the gradient. Results: A significant increase in mangrove cover has occurred in backwaters of the lagoons during the last 40 years, and especially during the El Niño anomalies of the 1980s and 1990s, while at the same time the mangrove fringe has been receding. Conclusions: The observed change can be attributed to the combined action of the warm surface waters of El Niño events and sea‐level rise. Jointly, these two effects are sufficient to flood large areas of previously non‐flooded salt flats, dispersing mangrove seedlings inland. The inland expansion of mangroves, however, does not ease conservation concerns, as it is the seaward fringes, and not the inland margins, that provide the most valuable environmental services for fisheries and coastal protection.  相似文献   
65.
Questions: On sandy coastal habitats, factors related to substrate and to wind action vary along the sea–inland ecotone, forming a marked directional disturbance and stress gradient. Further, input of propagules of alien plant species associated to touristic exploitation and development is intense. This has contributed to establishment and spread of aliens in coastal systems. Records of alien species in databases of such heterogeneous landscapes remain scarce, posing a challenge for statistical modelling. We address this issue and attempt to shed light on the role of environmental stress/disturbance gradients and propagule pressure on invasibility of plant communities in these typical model systems. Location: Sandy coasts of Lazio (Central Italy). Methods: We proposed an innovative methodology to deal with low prevalence of alien occurrence in a data set and high cost of field‐based sampling by taking advantage, through predictive modelling, of the strong interrelation between vegetation and abiotic features in coastal dunes. We fitted generalized additive models to analyse (1) overall patterns of alien occurrence and spread and (2) specific patterns of the most common alien species recorded. Conclusion: Even in the presence of strong propagule pressure, variation in local abiotic conditions can explain differences in invasibility within a local environment, and intermediate levels of natural disturbance and stress offer the best conditions for spread of alien species. However, in our model system, propagule pressure is actually the main determinant of alien species occurrence and spread. We demonstrated that extending the information of environmental features measured in a subsample of vegetation plots through predictive modelling allows complex questions in invasion biology to be addressed without requiring disproportionate funding and sampling effort.  相似文献   
66.
This paper is intended as an investigation of the biogeographic characteristics of insect faunas of the seven islands in West Coastal of Incheon, Korea, using quantitative analysis. The faunal similarity is examined using the Bray & Curtis similarity. The obtained similarity value matrix was examined by a cluster analysis using UPGMA method. The number and the distribution records of each species in the areas are 1,001 species of insects belonging to 12 orders from the seven investigated islands. Among above seven islands, Seokmodo has the highest number of species, 497 species, while Yeonpyeongdo has the lowest, 136 species. The species composition of insects reported in Ganghwado was 309 species under seven orders. The similarity values between seven localities investigated range from 24.907(Gyodongdo to Yeonpyeongdo) to 49.899(Baengnyeongdo to Ganghwado). That is, the species composition of Baengnyeongdo(47.90%) was similar to that of Ganghwado, while that of Yeonpyeongdo(25.28%) was different from that. The cluster analysis using a similarity index shows that all the islands of these areas can be divided into 3 groups at the level of 30.97%.  相似文献   
67.
Zhou J  Chen B  Yu W W  Huang H 《农业工程》2011,31(5):264-270
Coastal wetland is located in the active interface between land and sea, which is one of the richest biodiversity habitats, while it is seriously disturbed and destroyed by anthropogenic activities in both terrestrial and marine parts. Habitat serves as the basis for organism survival, providing food, shelter, water, space and so on, and habitat degradation and loss caused by intense anthropogenic activities is widely considered as the main reason for biodiversity decline and loss. However, there is still limited study on the evaluating methods of coastal wetland habitats, especially for those in a large scale. In this study, methods for evaluating coastal wetland habitat quality, including selecting indicators, setting value assignment criteria and weights were discussed systematically, a method of coastal wetland habitat quality evaluation was established, and the habitat quality in Quanzhou Bay was also evaluated as a case study. The present study provided a new concept and method to assess quantitatively habitat status, indicate the ecological status and its change, and also reflect and predict indirectly the ecological impact of human activities.
Referring to the habitat evaluation system (HES) developed by United States in the mid 1970s, the evaluation method was established by thorough analysis of the characteristics of coastal wetland. The habitat indicators were selected in terms of three habitat factors as follows: chemical factors, including dissolved oxygen (DO), phosphate in seawater, sulfide in sediment, and regional priority pollutants; physical factors, including landscape naturalness index and coastline artificialization index; biological factors, including invasive species risk and area ratio of invasive alien species. Weights were established by Analytic Hierarchy Process, combined with several-round expert evaluation. Evaluation criteria providing principles for value assignment of each indicator, were established referring to previous standards and related researches. The final result for assessing habitat quality was indicated and stated by the value of Habitat Quality Index (HQI), which is the weighted sum of each indicator. Habitat quality increased with the HQI value, with value ranging from 0 to 100.
The established evaluating method was applied to assess the habitat quality of Quanzhou Bay, located in the southeast coastal zone of Fujian Province, with a total area of 136.4 km2, which is an important bay in Fujian. Quanzhou Bay wetland is a typical coastal wetland with diverse wetland habitats, including mangrove, estuary, island, aquaculture ponds, salt pan, shallow sea, mud flat and so on. The Quanzhou Bay is now seriously suffering environmental problems, e.g. eutrophication due to great discharge of domestic, agricultural and industrial wastewater, rapid urbanization and reclamation resulting in decreased wetland area, and the invasion of alien species. The evaluation results showed that the habitat quality index value was 68.13, 57.99 and 51.23 in 1989, 2002 and 2008, respectively, indicating that the habitat degraded gradually. The five major factors that led to decline of HQI value were phosphate in seawater, lead in sediment, landscape naturalness index and coastline artificialization index and area ratio of invasive alien species. Therefore, in order to improve and maintain habitat quality, it is urgent to control pollution, large-scale reclamation and Spartina invasion in Quzhou Bay.  相似文献   
68.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   
69.
The Pawcatuck river watershed (797 km2) is located in southern Rhode Island and northeastern Connecticut. The predominant lithology of the area is granite, and over 60% of the watershed remains forested with mixed hardwoods (primarily oak) and eastern white pine. As part of a larger study of nutrient and sediment exports from the watershed to Little Narragansett Bay, we measured dissolved silica (SiO2) (DSi) concentrations at the river mouth over 70 times between January 14, 2002 and November 29, 2002. Annual export of DSi during our study was 40 × 106 mol or 50 kmol km−2. The United States Geological Survey (USGS) obtained DSi concentrations at this site, at varying frequencies, from 1978 to the present, which allowed for a historical comparison of this study with previous years. River DSi concentrations exhibited a strong seasonal signal that did not vary in a regular way with water discharge or water temperature. DSi and dissolved inorganic nitrogen (DIN) concentrations were significantly related over the annual cycle (p<0.0001) and both decreased substantially during the spring. Dissolved inorganic phosphorus (DIP) did not covary at any time with silica or nitrogen, suggesting that in-stream biological uptake was not responsible for the seasonal decline in silica. The spring decline in river silica concentrations may be due to silica uptake by terrestrial vegetation. We estimate a net forest silica accretion rate of 41 kmol km−2 y−1, a value that is stoichiometrically consistent with other measurements of net carbon accretion in nearby forests.  相似文献   
70.
Seed dispersal has become an important issue in plant ecology and restoration management. In this paper we examined dung germinating seed content and seed deposition patterns of horses (Shetland and Konik breeds) and Scottish Highland cattle grazing two coastal dune nature reserves. Two times 2.5 l of fresh dung from each type of herbivore were collected during seven sessions in the main fruiting season. Dung samples were placed under greenhouse conditions after drying and cooling. Animal defecation patterns were derived from a study of herbivore activities during 6 h observation sessions 8 times a month. One hundred and seventeen plant species i.e. 27% of all species occurring in the study area, were recorded as seedlings emerging from the dung samples. The most abundantly and frequently recorded plant species were Urtica dioica, Juncus spp. and different species of Poaceae and Caryophyllaceae. In general seedling density is high (1158 seedlings/dung sample). Seedling density and species richness were further analysed in order to detect temporal variability and possible animal and site related characteristics. Dung deposition patterns reflect a non-random use of habitats and hence a non-random seed deposition among habitats. Calculated seed deposition per square meter ranged from a few (<10 germinating seeds) to more than 100 in the most frequently selected habitats. From the herbivores’ selective habitat use and their estimated mean retention time we can further assume their ability for inter-habitat endozoochorous seed dispersal. This characteristic of large herbivores is further discussed in the light of nature management and restoration.Indra Lamoot is an aspirant of FWO-Flanders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号