首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Watersheds are useful templates for wetland protection and land use planning because they integrate cumulative effects that better inform site-specific management decisions. The goal of this study was to demonstrate application of a three-tiered assessment paradigm in the San Gabriel watershed (Los Angeles County, California) that incorporates monitoring at varying spatial scales and intensities. Data on wetland extent and distribution, habitat condition using rapid assessment, and intensive site monitoring were used to show how different levels of assessment can be used together to provide a deeper contextual understanding of overall wetland condition. Wetland sites in the less developed portions of the watershed were of higher overall condition compared to sites located in the more urbanized portions of the watershed. GIS analysis revealed that percent impervious surface is a useful landscape-scale indicator of riverine wetland condition. Furthermore, rapid assessment metrics were significantly correlated with stressors found at sites. Significant correlations also existed between riverine habitat condition, water chemistry, and benthic macroinvertebrate communities across streams in this watershed. This study highlights the following key concepts: (1) application of a multiple indicator approach at different spatial scales and sampling intensities promotes a better understanding of the causal relationships between land use, wetland condition, and anthropogenic stress, (2) a multi-tiered monitoring approach can provide a cost-effective means of integrating wetland status and trends assessments into routine watershed monitoring programs, and (3) a three tiered approach to monitoring provides wetland managers with an effective organizational tool that can be used to prioritize management activities.  相似文献   

2.
Biological assessment of aquatic resources requires the availability of bioassessment tools that work in all waterbody types and regions of interest. Developing new assessment tools may require several years of data collection and substantial investment of resources, which may not be an option for some aquatic resource managers. Adapting tools developed for different regions or wetland types may be an attractive alternative to developing new indices, provided they work well in the novel setting. In this study, we explore the transferability of two bioassessment indices for application to depressional wetlands in California, which are wetland type of management concern but for which bioassessment tools don’t currently exist. We tested the applicability of a depressional wetland invertebrate index of biotic integrity (IBI) developed in the San Francisco Bay region of northern California for application in the drier regions of southern California (i.e. geographic transferability), and the ability to apply a riverine benthic diatom IBI to benthic diatoms in depressional wetlands (i.e. water body type transferability). We evaluated the accuracy and responsiveness of the existing Indices for use in depressional wetlands and refined reference definitions and recalibrated thresholds relative to stressor gradients to maximize index performance. Performance of the adapted indices was compared to that of an existing habitat assessment tool (the California Rapid Assessment Method; CRAM) that has been developed for statewide application of depressional wetlands. Finally, we demonstrate application of the revised indices for ambient assessment of depressional wetland condition in southern California. Recalibrating both the macroinvertebrate and diatom indices to reference thresholds based on nutrient concentrations resulted in lower coefficient of variation among reference sites, greater differentiation between reference and non-reference and stronger relationship with stressors than when reference thresholds were based on landscape disturbance. Overall, the simple adjustment of the reference definition allowed us to transfer the indices with no structural changes to the metrics. This approach can facilitate future index adaptations that allow practitioners to include waterbody types for which there is no current index into routine biomonitoring programs.  相似文献   

3.
Climate change can shape evolution directly by altering abiotic conditions or indirectly by modifying habitats, yet few studies have investigated the effects of climate‐driven habitat change on contemporary evolution. We resampled populations of Threespine Stickleback (Gasterosteus aculeatus) along a latitudinal gradient in California bar‐built estuaries to examine their evolution in response to changing climate and habitat. We took advantage of the strong association between stickleback lateral plate phenotypes and Ectodysplasin A (Eda) genotypes to infer changes in allele frequencies over time. Our results show that over time the frequency of low‐plated alleles has generally increased and heterozygosity has decreased. Latitudinal patterns in stickleback plate phenotypes suggest that evolution at Eda is a response to climate‐driven habitat transformation rather than a direct consequence of climate. As climate change has reduced precipitation and increased temperature and drought, bar‐built estuaries have transitioned from lotic (flowing‐water) to lentic (still‐water) habitats, where the low‐plated allele is favoured. The low‐plated allele has achieved fixation at the driest, hottest southernmost sites, a trend that is progressing northward with climate change. Climate‐driven habitat change is therefore causing a reduction in genetic variation that may hinder future adaptation for populations facing multiple threats.  相似文献   

4.
国家二级保护野生植物水菜花(Ottelia cordata),喜生于清洁的水环境中,对环境变化极为敏感,是检验湿地环境及气候变化的关键指示物种之一,在我国仅零星分布于海南北部的火山熔岩湿地区,生存状况不容乐观。研究水菜花种群潜在生境选择及其空间格局演变,有利于加强濒危物种保护保育及湿地生态系统修复、管理。该研究基于GIS平台和MaxEnt模型,结合气候、地形和土壤因子,探究水菜花种群环境限制因子及其在气候变化背景下潜在适宜生境的演变格局。结果表明,水菜花种群对温差与降水量变化敏感,等温性、最冷季度降水量、土壤类型和年均降水量对水菜花种群分布影响显著;全新世中期-当前-2070年气候变化背景下,水菜花适宜生境面积先减小后增大,分布重心呈西南-东北-西南转移格局;未来气候情景下,水菜花种群高度和中度适宜生境缩减,低适宜生境增加,南部地区将出现新增适宜生境,东北、西北及西南部适宜生境将发生消减。该研究从气候环境角度论证了水菜花种群的潜在生境选择及空间变化特征,可为濒危物种保护保育、湿地管理及其生物多样性维护工作提供参考和指导。  相似文献   

5.
As many as 500,000 waterfowl reside in California, USA, during summer, but little is known about the availability or quality of their habitats. Wetland size and distribution serve as proximate cues for habitat selection by breeding waterfowl in other parts of North America such as the Prairie Pothole Region. In heavily modified landscapes such as California's Central Valley, disturbance from factors like crop cultivation and urban development may limit access, affect survival, and decrease reproductive success. Water limitations due to recurring seasonal droughts pose another potential threat to breeding waterfowl. Spatial and temporal disparities in environmental resources may provide clearer indications of ultimate habitat selection. We addressed waterfowl habitat selection in 9 regions surveyed annually by California's Department of Fish and Wildlife to determine relative importance of drought severity, wetland area, and habitat quality on mallard (Anas platyrhynchos) and other waterfowl population dynamics from 2007–2019. High-quality habitat supports long-term population persistence of waterfowl. This study period included an extended drought (2012–2015) and flooding (2016–2017). Statewide, habitat quality was the best predictor of mallard and other waterfowl population fluctuations. The model that included intermediate habitat quality, which accounted for influence of adjacent land-use, outperformed models that included wetland area alone. At the regional level, drought severity out-ranked other variables in most regions, suggesting management at regional scales must account for climate. Drought accounted for bird declines in some regions and possible increases in others. This information could be used to identify areas for conservation priority based on projected drought frequency and severity.  相似文献   

6.
The effects of habitat loss and fragmentation on the genetic structure and variability of wild populations have received wide empirical support and theoretical formalization. By contrast, the effects of habitat quality seem largely underinvestigated, partly due to technical difficulties in properly assessing habitat quality. In this study, we combine geographic information system (GIS)-based habitat-quality modelling with a landscape genetics approach based on mitochondrial DNA markers to evaluate the possible influence of habitat quality on the levels and distribution of genetic diversity in a range of natural populations (n = 15) of Otis tarda throughout Spain. Ninety-three percent of the population represented by our countrywide sample lives in good-quality habitats, while 4.5% and 2.5% occur respectively in intermediate and poor habitats. Habitat quality was highly correlated with patch size, population size and population density, indicating the reliability and predictive power of the habitat suitability model. Genetic diversity was significantly correlated with habitat quality, size and density of the population, but not with patch size. Three of a total of 20 existing matrilineages from the species’ current genetic pool are restricted to poor-quality habitats. This study therefore highlights the importance of considering both population genetics and habitat quality in a species of high conservation priority.  相似文献   

7.
A. A. Amadi 《Hydrobiologia》1990,208(1-2):27-38
A bar-built estuary, a drowned river valley and two river delta estuaries were compared and contrasted to elucidate the impact of some abiotic factors, notably climate, salinity, and oxygen on the distribution of the aquatic fauna and flora.Salinity was recognizable as the key factor responsible for the population dynamics in these habitats. The mangrove community is characteristically zoned, but development and distribution of the trees is restricted in view of coastal geomorphic and hydrological processes to the western banks of the estuaries.The preponderance of marine fish species in estuaries was confirmed, although the wide salinity tolerance of some prolific-breeding Cichlidae from freshwater was noted. Forty-eight species of bony fishes were recorded in Lagos Lagoon, the Escravos, and Qua Ibo estuaries and classified by salinity tolerance into stenohaline and euryhaline marine species (66%), and freshwater species (34%). The same estuarine ichthyofauna were split into trophic groups: piscivores (46%), zooplankton feeders (10%), meiobenthos feeders (27%), and macrobenthos feeders (17%).  相似文献   

8.
Community structure and association of waterbirds with spatial heterogeneity in the Bahia Magdalena-Almejas wetland complex, Baja California Sur, Mexico. To test the hypothesis that spatial heterogeneity determines waterbird diversity in a coastal wetland, we compared waterbird density, diversity, and species composition among various habitats and landscapes units in Bahia Magdalena-Almejas, Baja California Sur, Mexico. Based on diversity patterns and bird distribution, we assessed the effect of coastal development on the waterbird community structure. To gather information on habitat features and waterbird populations we conducted waterbird censuses in 329 habitat segments along the internal coastline of the study area, from February 2002 to February 2003. We performed non-parametric analyses to test the null hypothesis of no diference on waterbird density, and diversity among landscape units and seasons. The species composition was evaluated using ordination techniques. Waterbird density was higher in winter and autumn in the three lagoons of the study area, particularly in the insular coast, sandy beach and dunes; it was higher in the few segments of antropic sustrate. Diversity was significantly higher in mangrove habitat along the peninsular coast, and in mangrove-dunes association on the insular coast. Although modification of coastal natural habitat and boat transit disturbance had no influence on waterbird density or diversity, the highest richness of waterbirds occurred in well preserved areas. Species composition analysis showed differences between Santo Domingo Channel and Magdalena Bay. Pelagic and mangrove habitat had a species composition difference higher than those associations in other habitats. Such differences in species assemblages by habitat and landscape units suggest that communities are structured according to the range of available natural resources in structurally complex habitats, and that dominant piscivorous waterbird species were favored in this community.  相似文献   

9.
Koop  Anthony L. 《Plant Ecology》2004,172(2):237-249
During the early phases of biological invasions, both limited dispersal and habitat preference may contribute to observed patterns of distribution for non-native species. In a disturbed area of Everglades National Park, the non-native Ardisia elliptica (Myrsinaceae) does not occur in all habitat types nor is it evenly distributed among habitats where it does occur. One goal of this study was to determine whether the patchy distribution of A. elliptica may be due to differential effects of habitat on seed fates and germination. Screen mesh bags containing seeds of A. elliptica were buried in the surface litter of five habitats and were later sampled periodically over a three month period to measure seed germination, survival and death. Seed mortality and mean germination speed was higher in open exposed habitats relative to closed canopied forests. During the study period, which coincided with the dry season, there was no germination of seeds that had been placed in pine forests or in Schinus thickets that were highly disturbed pine forests. Because hydroperiod is a critical determinant of habitat type in the Everglades ecosystem, a second goal of this study was to determine whether water availability was correlated with seed germination and seedling survival in five sites where A. elliptica has invaded. Seeds were sown under mesh boxes and monitored for germination and seedling survival for ten months. Estimates of water availability taken as predawn water potentials on A. elliptica were positively correlated with percent seed germination but not with percent seedling survival. Additionally, pre-dawn water potential of A. elliptica differed among sites. This study suggests that differential water availability among habitats may have influenced the patchy distribution of A. elliptica in Everglades National Park. Lack of sufficient moisture availability for seeds in exposed habitats such as pine forests and wetland prairies during the dry season has contributed to its distribution. Because some of the habitats where A. elliptica currently occurs were pine forests and wetland prairies prior to disturbance, this study suggests that substrate disturbance and canopy formation have altered the soil microenvironment, favoring the establishment of A. elliptica.  相似文献   

10.
段后浪  于秀波 《生态学报》2023,43(15):6354-6363
中国滨海湿地是东亚-澳大利西亚迁徙路线上候鸟重要的停歇地、繁殖地和越冬地,土地利用变化所引发的滨海湿地退化导致水鸟栖息地类别和面积发生了很大转变,影响迁徙水鸟种群数量的稳定性。然而,土地利用变化在哪些区域和多大程度上影响了迁徙水鸟的栖息地分布尚不清晰。以土地围垦典型区域黄渤海滨海湿地为研究区,以受胁濒危水鸟物种勺嘴鹬、大滨鹬、大杓鹬、小青脚鹬、黑脸琵鹭、黄嘴白鹭、遗鸥、黑嘴鸥为研究对象,结合物种分布模型MaxEnt和GIS空间分析,模拟2000、2015、2020年水鸟栖息地时空分布,探索过去20年栖息地分布的时空变化,分析水鸟种群变化趋势,识别水鸟栖息地保护优先区域,提出水鸟栖息地保护管理建议。结果显示:2000—2020年,8个水鸟物种栖息地主要分布在渤海湾、莱州湾、江苏盐城沿岸、如东-东台沿岸区域。所有物种的栖息地面积均呈不同程度的下降趋势,其中7个物种栖息地下降比例超过50%,下降的区域主要分布在渤海湾、江苏盐城沿岸、东台条子泥、小洋口沿岸,滨海湿地丧失是导致水鸟栖息地面积下降的直接因素。7个物种种群数量呈下降趋势。研究所确定的水鸟保护优先区面积达240.32 km2...  相似文献   

11.
Although off-channel habitats in the estuaries of large rivers impart many benefits to fish that rear within them, it is less clear how these habitats benefit migrating anadromous species that utilize these habitats for short periods of time. We evaluated the physiological correlates (nutritional condition, growth, and smoltification) of habitat utilization (main-channel vs. off-channel) by juvenile Chinook salmon Oncorhynchus tshawytscha during emigration. Fish from the off-channel had higher condition factor scores and relative weights than fish from the main-channel throughout the study period. Plasma triglyceride and protein concentrations were significantly different between habitat types and across the sampling period, suggesting that fish utilizing the off-channel habitats were compensating for energy losses associated with emigration as compared to main-channel fish. Growth potential (RNA to DNA ratio) did not vary by habitat or sampling period, presumably due to short residency time. There were no differences in osmoregulatory capacity (gill Na(+), K(+)-ATPase activity) based on habitat type. Our results indicate that short-term off-channel habitat use may mitigate for energy declines incurred during migration, but likely does not impart significant gains in energy stores or growth.  相似文献   

12.
Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress.  相似文献   

13.
Eriocheir sinensis H. Milne Edwards, 1853 is on the list of top 100 invaders compiled by the International Union for Conservation of Nature and Natural Resources. The recent establishment of a large Chinese mitten crab population in San Francisco Bay and the potential for introductions from California, Asia and Europe pose a significant invasion potential for estuaries and rivers from California to Alaska. This alien species would place at risk the catchment areas of the Pacific Northwest including the economic and social activities that depend upon intact aquatic systems. An analysis of ecological conditions that define the mitten crab’s native and introduced range suggests that large stable estuaries with long flushing times are necessary to sustain significant populations. Most Pacific Northwest estuaries have limited salinity intrusion, estuarine habitat and short flushing times and face a reduced risk of population establishment. Large, stable estuaries, such as the Puget Sound, may support significant populations. River-dominated estuaries, such as the Columbia River, have flushing times less than the duration of larval development and wouldn’t support populations. An application of a temperature based larval development rate to near-shore and estuary sea surface temperatures suggests that estuaries in Oregon and Washington have sufficient thermal regimes to support larval development. Most estuary systems in Alaska have limited periods where water temperatures are above the mortality threshold for the larval stages and are at a low risk for the establishment of populations. A potential sea temperature rise of two degrees Celsius would permit larval development in Alaskan estuaries, where sufficient estuarine and freshwater habitats exist.  相似文献   

14.
We carried out a two-part investigation that revealed habitat differences in marine invertebrate invasions. First, we compared invasion levels of hard vs soft substrata in Elkhorn Slough, an estuary in Central California, by comparing abundance and richness of native vs exotic species in quantitative samples from each habitat type. Our results revealed that the hard substrata were much more heavily invaded than the soft substrata. Nearly all the hard substrata in Elkhorn Slough, as in most estuaries along the Pacific coast of North America, are artificial (jetties, rip-rap, docks). Some exotic species may by chance be better adapted to this novel habitat type than are natives. Two major vectors responsible for marine introductions, oyster culturing and ship-hull fouling, are also more likely to transport species associated with hard vs soft substrata. Secondly, we compared estuarine and open coast invasion rates. We examined species richness in Elkhorn Slough and adjacent rocky intertidal habitats along the Central California coast. The absolute number of exotic species in the estuary was an order of magnitude higher than along the open coast (58 vs 8 species), as was the percentage of the invertebrate fauna that was exotic (11% vs 1%). Estuaries on this coast are geologically young, heavily altered by humans, and subject to numerous transport vectors bringing invasive propagules: all these factors may explain why they are strikingly more invaded than the open coast. The finding that the more species rich habitat – the open coast – is less invaded is in contrast to many terrestrial examples, where native and exotic species richness appear to be positively correlated at a broad geographic scale.  相似文献   

15.
Assessment of occupancy status, as well as projection of suitable habitats and connectivity of wetland indicator species, and thereby identification of potential conservation umbrella and projection of conservation priority areas are often considered important for wetland conservation. Kingfishers are wetland indicators and suffer from habitat degradation due to world-wide destruction of wetlands. Therefore, they can be considered potential candidates for conservation intervention. The present knowledge about the spatial distribution of suitable areas and habitat connectivity of kingfishers at a landscape level is non-existent. We conducted extensive surveys and recorded four kingfisher species in East Kolkata Wetlands (EKW; Ramsar site No. 1208; ∼125 km2). The occupancy estimates were highest for White-throated kingfisher (Halcyon smyrnensis, WTK), followed by common kingfisher (Alcedo atthis, CK), stork-billed kingfisher (Pelargopsis capensis, SBK) and lowest for pied kingfisher (Ceryle rudis, PK). WTK has the highest amount of suitable areas followed by CK, PK and SBK. The spatial overlap of suitable habitats showed that SBK is the potential umbrella species and therefore provides conservation benefits to other kingfisher species and eventually to the EKW. In addition to water areas, emergent vegetation, crop lands and tree cover are other important habitats for kingfishers. The connectivity analyses revealed that suitable habitats were disjunct and are under various anthropogenic threats. Therefore, we need to protect suitable habitats and connectivity between them. Finally, we identified conservation priority areas. Conservation intervention on these high priority zones will not only be beneficial for kingfishers, but also for other avifauna having similar resource requirements as well as the wetland parse.  相似文献   

16.
Migratory birds face significant challenges across their annual cycle, including occupying an appropriate non-breeding home range with sufficient foraging resources. This can affect demographic processes such as over-winter survival, migration mortality and subsequent breeding success. In the Sahel region of Africa, where millions of migratory songbirds attempt to survive the winter, some species of insectivorous warblers occupy both wetland and dry-scrubland habitats, whereas other species are wetland or dry-scrubland specialists. In this study we examine evidence for strategic regulation of body reserves and competition-driven habitat selection, by comparing invertebrate prey activity-density, warbler body size and extent of fat and pectoral muscle deposits, in each habitat type during the non-breeding season. Invertebrate activity-density was substantially higher in wetland habitats than in dry-scrubland. Eurasian reed warblers Acrocephalus scirpaceus occupying wetland habitats maintained lower body reserves than conspecifics occupying dry-scrub habitats, consistent with buffering of reserves against starvation in food-poor habitat. A similar, but smaller, difference in body reserves between wet and dry habitat was found among subalpine warblers Sylvia cantillans but not in chiffchaffs Phylloscopus collybita inhabiting dry-scrub and scrub fringing wetlands. Body reserves were relatively low among habitat specialist species; resident African reed warbler A. baeticatus and migratory sedge warbler A. schoenobaenus exclusively occupying wetland habitats, and Western olivaceous warblers Iduna opaca exclusively occupying dry habitats. These results suggest that specialists in preferred habitats and generalists occupying prey-rich habitats can reduce body reserves, whereas generalists occupying prey-poor habitats carry an increased level of body reserves as a strategic buffer against starvation.  相似文献   

17.
A major goal of landscape genetics is to understand how landscapes structure genetic variation in natural populations. However, landscape genetics still lacks a framework for quantifying the effects of landscape features, such as habitat type, on realized gene flow. Here, we present a methodology for identifying the costs of dispersal through different habitats for the California tiger salamander ( Ambystoma californiense ), an endangered species restricted to grassland/vernal pool habitat mosaics. We sampled larvae from all 16 breeding ponds in a geographically restricted area of vernal pool habitat at the Fort Ord Natural Reserve, Monterey County, California. We estimated between-pond gene flow using 13 polymorphic microsatellite loci and constructed GIS data layers of habitat types in our study area. We then used least-cost path analysis to determine the relative costs of movement through each habitat that best match rates of gene flow measured by our genetic data. We identified four measurable rates of gene flow between pairs of ponds, with between 10.5% and 19.9% of larvae having immigrant ancestry. Although A. californiense is typically associated with breeding ponds in grassland habitat, we found that dispersal through grassland is nearly twice as costly as dispersal through chaparral and that oak woodland is by far the most costly habitat to traverse. With the increasing availability of molecular resources and GIS data, we anticipate that these methods could be applied to a broad range of study systems, particularly those with cryptic life histories that make direct observation of movement challenging.  相似文献   

18.
To complete their life cycle waterbirds rely on patchily distributed and often ephemeral wetlands along their migration route in a vast unsuitable matrix. However, further loss and degradation of remaining wetland habitats might lead to a configuration and size of stopovers that is no longer sufficient to ensure long-term survival of waterbird populations. By identifying optimal conservation targets to maintain overall habitat availability en route, we can accommodate an as yet absent functional connectivity component in larger management frameworks for migratory waterbirds, such as the Ramsar Convention and the EU Natura 2000 Network. Using a graph-based habitat availability metric (Equivalent Connected Area) we determine the functional connectivity of wetland networks for seven migratory waterbirds with divergent habitat requirements. Analyses are performed at two spatial extents both spanning the Mediterranean Sea and centered around Greece (Balkan-Cyrenaica and Greece-Cyrenaica). We create species-specific suitable habitat maps and account for human disturbance by species-specific disturbance buffers, based on expert estimates of Flight Initiation Distances. At both spatial extents we quantitatively determine the habitat networks’ overall functional connectivity and identify wetland sites that are crucial for maintaining a well-connected network. We show that the wetland networks for both spatial extents are relatively well connected and identify several wetland sites in Greece and Libya as important for maintaining connectivity. The application of disturbance buffers results in wetland site-specific reduction of suitable habitat area (0.90–7.36%) and an overall decrease of the network’s connectivity (0.65–6.82%). In addition, we show that the habitat networks of a limited set of species can be combined into a single network which accounts for their autoecological requirements. We conclude that targeted management in few but specific wetland complexes could benefit migratory waterbird populations. Deterioration of these vital wetland sites in Greece and Libya will have disproportionate consequences to the waterbird populations they support.  相似文献   

19.
Using data collected for the Environmental Protection Agency's (EPA) 2011 National Wetland Condition Assessment (NWCA), we developed separate multimetric indices (MMIs) for vegetation, soil, algae taxa, and water to assess condition of freshwater wetlands in the northeastern US. This study represents the first attempt at developing multiple biotic and abiotic MMIs of wetland condition over this large of an area, and is only possible because of the high quality data collected by the NWCA. We chose metrics that distinguished between reference and most disturbed sites, had a signal:noise ratio > 2, and were not strongly correlated with other metrics, latitude, or longitude. The vegetation and soil MMIs were the best performing indices, with good separation between reference and most disturbed sites, and included commonly used condition metrics (e.g., pH and P concentration for soil, and percent cover of exotic species for vegetation). The algae MMI was the weakest index, with considerable overlap between reference and most disturbed sites. For areas smaller than our study, algae taxa may be suitable for wetland MMIs. However, in our study area, many algae taxa followed strong latitudinal or longitudinal gradients, and could not be considered for the algae MMI. Small sample size and several metrics with a high signal:noise ratio were the major limitations of the water MMI. We also examined how well landscape (level 1) and rapid assessment (level 2) metrics predicted MMIs using random forest regression. Agricultural land use surrounding wetlands was an important predictor for all four MMIs, although the soil, algae and water MMI models performed best when intensive (level 3) vegetation metrics were also included in the random forest regression models. Based on these results, we recommend wetland assessment programs employ a combination of landscape and rapid assessment monitoring at many sites, along with level 3 monitoring at a subset of sites. We developed these MMIs to evaluate freshwater wetland condition for a long-term monitoring program in Acadia National Park. These MMIs are also applicable to a range of wetland types covering 11 states in the northeastern United States and can be calculated using a downloadable spreadsheet that calculates and rates each MMI using raw metric values.  相似文献   

20.
典型草原区不同生境反硝化菌群的空间特征   总被引:2,自引:0,他引:2  
【背景】锡林河-河滨湿地-阶地草原是蒙古高原典型草原区代表性的水生-湿生-陆生生境,但不同生境中反硝化菌群的空间分布特征尚不明晰。【目的】阐明典型草原区不同生境反硝化菌群的组成、丰度、空间分布特征及异质性成因。【方法】利用16S rRNA基因测序研究锡林河流域水生、湿生、陆生生境6个样带沉积物/土壤细菌群落组成及相对丰度。基于2014年及以前文献报道的反硝化细菌及16S rRNA基因信息构建参比菌库,筛选生境关联的反硝化菌属。通过典范对应分析等探究反硝化菌群空间异质性成因。【结果】参比菌库包含80种反硝化细菌(65个属),6个样带测序获得的469个细菌属中36个为反硝化细菌属。3种生境共存的反硝化细菌有14个属,其中黄杆菌属(1.65%-14.17%)和噬氢菌属(1.56%-1.69%)是水生和湿生生境共有的优势菌,假单胞菌属(1.85%)是低河漫滩样带的优势菌。空间分布特征显示反硝化菌群沿水生-湿生-陆生生境呈现先升后降的分布趋势,在低河漫滩湿地达到最高值。典范对应分析表明:黄杆菌属、噬氢菌属、气单胞菌属、鞘氨醇单胞菌属等与pH值、水分及沙粒含量呈正相关关系,而芽孢杆菌属、链霉菌属、马杜拉放线菌属等与粘粒、粉粒、有机质、总氮含量等呈正相关关系。【结论】典型草原区反硝化菌群组成及丰度具有明显的生境异质性,低河漫滩湿地是反硝化细菌生长繁殖的最佳生境,由颗粒组成、水分含量和pH等环境因子共同驱动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号