首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9768篇
  免费   572篇
  国内免费   441篇
  2023年   145篇
  2022年   156篇
  2021年   263篇
  2020年   256篇
  2019年   283篇
  2018年   329篇
  2017年   203篇
  2016年   239篇
  2015年   329篇
  2014年   480篇
  2013年   613篇
  2012年   371篇
  2011年   576篇
  2010年   447篇
  2009年   578篇
  2008年   522篇
  2007年   541篇
  2006年   496篇
  2005年   494篇
  2004年   408篇
  2003年   312篇
  2002年   290篇
  2001年   214篇
  2000年   173篇
  1999年   186篇
  1998年   175篇
  1997年   139篇
  1996年   122篇
  1995年   125篇
  1994年   132篇
  1993年   106篇
  1992年   100篇
  1991年   81篇
  1990年   78篇
  1989年   84篇
  1988年   60篇
  1987年   57篇
  1986年   51篇
  1985年   52篇
  1984年   103篇
  1983年   78篇
  1982年   75篇
  1981年   58篇
  1980年   53篇
  1979年   37篇
  1978年   22篇
  1977年   24篇
  1976年   14篇
  1975年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
The migrating monocyte shows dynamic actin polymerization in response to MCP-1. We investigated the involvement of the actin-related protein 2 and 3 complex (Arp2/3 complex) during chemotaxis of a human monocyte cell line (THP-1). To clarify whether the Arp2/3 complex directly polymerizes actin in response to MCP-1 stimulation, THP-1 cells were transfected with complementary DNA constructs encoding ScarWA. In ScarWA-transfected cells, neither recruitment of Arp2/3 complex at the leading edge nor actin polymerization was detected. Indeed, migration induced by MCP-1 was almost completely blocked. At the same time, transfection also interfered with the recruitment of integrin beta-1 at the leading edge and reduced affinity binding to fibronectin. Immunoprecipitation with an anti-Arp2 antibody showed that integrin beta-1 and WASP were co-precipitated under the condition of MCP-1 stimulation. These results indicate that interaction between the Arp2/3 complex and WASP stimulates actin polymerization and integrin beta-1-mediated adhesion during MCP-1-induced chemotaxis of THP-1 cells.  相似文献   
982.
The ESC protein, like other Polycomb Group proteins, is required for heritable silencing of the homeotic genes. ESC is phosphorylated in vivo, but the region of ESC that is phosphorylated and its consequences are not known. Here, we show that the amino-terminal region of ESC (residues 1-60) mediates its phosphorylation and dimerization. Phosphorylation of ESC1-60 in vitro by CK1 and CK2 strongly enhances its dimerization. Both phosphorylation and dimerization are conserved in the mammalian ESC homolog EED, suggesting that they play important roles in vivo. One role is suggested by the effect of phosphatase treatment on native ESC complexes, which does not affect the integrity of the 600 kDa ESC/E(Z) complex, but eliminates the 1 MDa ESC/E(Z) complex, which is distinguished from the former by the presence of the additional subunits PCL and RPD3. Thus, stability and perhaps assembly of larger ESC complexes may depend on ESC phosphorylation.  相似文献   
983.
Mutations in the XNP/ATR-X gene cause several X-linked mental retardation syndromes in humans. The XNP/ATR-X gene encodes a DNA-helicase belonging to the SNF2 family. It has been proposed that XNP/ATR-X might be involved in chromatin remodelling. The lack of a mouse model for the ATR-X syndrome has, however, hampered functional studies of XNP/ATR-X. C. elegans possesses one homolog of the XNP/ATR-X gene, named xnp-1. By analysing a deletion mutant, we show that xnp-1 is required for the development of the embryo and the somatic gonad. Moreover, we show that abrogation of xnp-1 function in combination with inactivation of genes of the NuRD complex, as well as lin-35/Rb and hpl-2/HP1 leads to a stereotyped block of larval development with a cessation of growth but not of cell division. We also demonstrate a specific function for xnp-1 together with lin-35 or hpl-2 in the control of transgene expression, a process known to be dependent on chromatin remodelling. This study thus demonstrates that in vivo XNP-1 acts in association with RB, HP1 and the NuRD complex during development.  相似文献   
984.
We investigated the importance of the major histocompatibility complex (MHC) constitution on the parasite burden of free-ranging mouse lemurs (Microcebus murinus) in four littoral forest fragments in southeastern Madagascar. Fourteen different MHC class II DRB-exon 2 alleles were found in 228 individuals with high levels of sequence divergence between alleles. More nonsynonymous than synonymous substitutions in the functional important antigen recognition and binding sites indicated selection processes maintaining MHC polymorphism. Animals from the four forest fragments differed in their infection status (being infected or not), in the number of different nematode morphotypes per individual (NNI) as well as in the fecal egg counts (FEC) values. Heterozygosity in general was uncorrelated with any of these measures of infection. However, a positive relationship was found between specific alleles and parasite load. Whereas the common allele Mimu-DRB*1 was more frequently found in infected individuals and in individuals with high NNI and FEC values (high parasite load), the rare alleles Mimu-DRB*6 and 10 were more prevalent in uninfected individuals and in individuals with low NNI and FEC values (low parasite load). These three alleles associated with parasite load had unique amino acid motifs in the antigen binding sites. This distinguished them from the remaining 11 Mimu-DRB alleles. Our results support the hypothesis that MHC polymorphism in M. murinus is maintained through pathogen-driven selection acting by frequency-dependent selection. This is the first study of the association of MHC variation and parasite burden in a free-ranging primate.  相似文献   
985.
986.
The mechanism of disease in forms of congenital and limb girdle muscular dystrophy linked to mutations in the gene encoding for Fukutin-related protein (FKRP) has previously been associated with the mis-localisation of FKRP from the Golgi apparatus. In the present report, we have transfected V5-tagged Fukutin-related protein expression constructs into differentiated C2C12 myotubes and the tibialis anterior of normal mice. The transfection of either wild type (WT) or several mutant constructs (P448L, C318Y, L276I) into myotubes consistently showed clear co-localisation with GM130, a Golgi marker. In contrast, whilst WT and the L276I localised to the Golgi of Cos-7 cells, the P448L and C318Y was mis-localised in the majority of these undifferentiated cells. The injection of the same constructs into the tibialis anterior of mice resulted in similar localisation of both the WT and all the mutants. Immunolabelling of FKRP in the muscle of MDC1C and LGMD2I patients was found to be indistinguishable from normal controls. Overall, these data suggest that retention in the endoplasmic reticulum of FKRP is not the main mechanism of disease but that this may instead relate to a disruption of the functional activity of this putative enzyme with its substrate(s) in the Golgi.  相似文献   
987.
We recently described that in the metastasizing rat pancreatic carcinoma line BSp73ASML the cell-cell adhesion molecule EpCAM, CD44 variant isoforms and the tetraspanins D6.1A and CD9 form a complex that is located in glycolipid-enriched membrane microdomains. This complex contains, in addition, an undefined 20 kDa protein. As such complex formation influenced cell-cell adhesion and apoptosis resistance, it became of interest to identify the 20 kDa polypeptide. This 20 kDa protein, which co-precipitated with EpCAM in BSp73ASML lysates, was identified as the tight junction protein claudin-7. Correspondingly, an association between EpCAM and claudin-7 was noted in rat and human tumors and in non-transformed tissues of the gastrointestinal tract. Co-localization of the two molecules was most pronounced at basolateral membranes, but was also observed in tight junctions. Evidence for direct protein-protein interactions between EpCAM and claudin-7 was obtained by co-immunoprecipitation after treatment of tumor cells with a membrane-permeable chemical cross-linker. The complex, which is located in glycolipid-enriched membrane microdomains, is not disrupted by partial cholesterol depletion, but claudin-7 phosphorylation is restricted to the localization in glycolipid-enriched membrane microdomains. This is the first report on an association between EpCAM and claudins in both non-transformed tissues and metastasizing tumor cell lines.  相似文献   
988.
We investigated the possible role of prostaglandins produced by COX-2 in the immunosuppression observed during Trypanosoma cruzi infection. Con-A-stimulated splenocytes isolated from mice on days 5, 10, and 15 of infection released large amounts of PGE2 and this release was inhibited by the treatment of animals with sodium salicylate or meloxicam. The treatment of the animals with these drugs enhanced the release of IL-2 by splenocytes from T. cruzi-infected animals and significantly reduced the blood parasitemia and delayed the mortality of the infected mice. Furthermore, the release of TNF-alpha, IFN-gamma, IL-4, and IL-10 by Con-A-stimulated splenocytes obtained from infected mice on days 5, 10, and 15 of the infection was significantly inhibited by treatment of the animals with salicylate or meloxicam. In conclusion, the results suggest that the prostaglandins produced mainly by COX-2 mediate the immunosuppression observed in the acute phase of T. cruzi infection.  相似文献   
989.
The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the "orphan" SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells.  相似文献   
990.
The malonato-bridged copper(II) complex [Cu(mal)(H2O)(azpy)1/2] · H2O (1) (mal = malonate, azpy = 4,4′-azobispyridine) has been synthesized and characterized by X-ray diffraction. The structure of 1 consists of malonato-bridged uniform copper(II) chains which are covalent connected through azpy to form two-dimensional wavelike network. The magnetic pathway of complex 1 is through a single syn-anti carboxylate bridge connecting equatorial and equatorial positions of adjacent copper(II) atoms, and have the value of the intrachain ferromagnetic coupling (J = 8.73(3) cm−1) and interchain antiferromagnetic coupling (zJ′ = − 1.31(1) cm−1) through a numerical expression for a ferromagnetic uniform chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号