首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   2篇
  国内免费   4篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有113条查询结果,搜索用时 203 毫秒
71.
The effect of cocaine and crack on the ploidy status of Feulgen-stained Tetrahymena pyriformis macronuclei using computerized DNA image analysis system was tested. For this purpose, selected doses of 5, 10 and 20 μg (per mL culture) of both drugs were administered for 2, 5 and 20 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the following parameters: Ploidy Balance (PB), Degree of Aneuploidy (DA), skewness and kurtosis. The results have shown a positive effect of both cocaine and crack on PB and on DA of T. pyriformis macronuclei. In particular, our results reveal that the aneugenic effect (which is expressed as a decrease in PB and an increase in DA) of cocaine on T. pyriformis macronuclei follows a dose-dependent manner, while crack induces aneuploidy in a dose-independent manner. Changes in the PB and DA values would induce a disturbance in the cellular density and heterogeneity of chromatin and the increase in skewness and kurtosis values after exposure of T. pyriformis to both drugs, did confirm this hypothesis. These observations were further correlated with alterations in the chromosomal segregation and with damage in mitotic spindle microtubules observed previously. In this study the impact of cocaine and crack on genomic instability and carcinogenesis was further supported and T. pyriformis can be proposed as a model organism to test the nuclear ploidy status after exposure to harmful chemicals and drugs.  相似文献   
72.
Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X‐chromosome and a unique second sex chromosome creating the following genotypes: XY*x, XX, XY*, XXY*. This Y* mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X‐chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X‐chromosomes. We present data showing, in addition to genes reported to escape X‐inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X‐chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y* model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.  相似文献   
73.
Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations. [BMB Reports 2014; 47(6): 299-310]  相似文献   
74.
The present study examined the effect of vitrification on oocyte aneuploidy and centromere cohesion. Firstly, germinal vesicle (GV) and in vitro matured oocytes (metaphase II, MII) were vitrified by open-pulled straw method. Secondly, thawed GV oocytes were matured in vitro to detect the aneuploidy rate and the sister inter-kinetochore (iKT) distance (in situ spreading and immunofluorescent staining). The results revealed that the sister iKT distance and the aneuploidy rate in eggs matured from vitrified-thawed GV oocytes were higher than that from in vivo matured, in vitro matured, and in vitro matured frozen oocytes (0.47 ± 0.03 vs. 0.33 ± 0.01 vs. 0.33 ± 0.02 vs. 0.34 ± 0.01 μm; P < 0.01 and 22.9% vs. 6.5% vs. 5.8% vs. 11.8%; P < 0.05, respectively). Furthermore, the percentage of sister chromosome pairs whose sister iKT distances were higher than 0.9 μm in eggs matured from vitrified-thawed GV oocytes (8.7%) was higher than that from in vivo matured (1.6%), in vitro matured (1.6%), and in vitro matured frozen oocytes (2.3%) (P < 0.05). The sister iKT distance was associated with centromere cohesion. To investigate whether vitrification of GV oocytes deteriorated centromere cohesion by affecting cohesin complex formation, thawed and fresh GV oocytes were used to detect the cohesin subunits (SMC1β, STAG3, SMC3, and REC8) mRNA expression (quantitative real-time polymerase chain reaction). The relative expression of three cohesin subunits (SMC1β, STAG3, and SMC3) was significantly decreased in GV oocytes after vitrification. In conclusion, vitrification of GV oocytes may result in the subsequent deterioration of centromere cohesion and an increase in the aneuploidy rate. MII oocytes may be the ideal candidate to avoid aneuploidy for fertility cryopreservation.  相似文献   
75.
Malmanche N  Maia A  Sunkel CE 《FEBS letters》2006,580(12):2888-2895
Aneuploidy is a common feature of many cancers, suggesting that genomic stability is essential to prevent tumorigenesis. Also, during meiosis, chromosome non-disjunction produces gamete imbalance and when fertilized result in developmental arrest or severe birth defects. The spindle assembly checkpoint prevents chromosome mis-segregation during both mitosis and meiosis. In mitosis, this control system monitors kinetochore-microtubule attachment while in meiosis its role is still unclear. Interestingly, recent data suggest that defects in the spindle assembly checkpoint are unlikely to cause cancer development but might facilitate tumour progression. However, in meiosis a weakened checkpoint could contribute to age-related aneuploidy found in humans.  相似文献   
76.
More than any other species, humans have difficulty reproducing. As recent studies show that human infertility is ever increasing, much efforts are needed towards the understanding of our low fecundity. While aneuploidy is the leading cause of spontaneous pregnancy loss in humans, we still know surprisingly little about the developmental consequences of chromosomal abnormalities. We have here used a mouse model that spontaneously incites chromosomal primary aneuploidy in female haploid oocytes and find that after fertilization, these primary aneuploid cells become cytological unstable, generating diverse karyotypic mosaic embryos. The mosaic aneuploid embryos can develop and implant into the female uterine tissue and initiate the gastrulation process (E6.5) but quickly degrade and succumb by E8.0. We find that loss of embryo viability due to chromosomal mosaicism is caused by the activation of a spatially and temporally controlled p53-independent apoptotic mechanism and does not result from a failure to progress through mitosis. We conclude that an initial state of primary aneuploidy within an embryo results in a rapid evolution of mosaicism and early embryonic death. This gestational loss due to aneuploid mosaicism could account for the large proportion of human pregnancy loss prior to clinical recognition.  相似文献   
77.
目的:探讨有丝分裂检查点蛋白着丝粒蛋白-E(CENP-E)基因在肿瘤发生发展中的作用。方法:利用shRNA下调CENP-E基因的表达,分别用巢式PCR和Western blot检测CENP-E mRNA和蛋白的表达;MTT检测CENP-E下调后MCF-7细胞的增殖变化;流式细胞术检测CENP-E下调后对MCF-7细胞凋亡的影响;Transwell试验检测MCF-7细胞的迁移和侵袭能力变化;间接免疫荧光检测细胞内CENP-E蛋白和有丝分裂情况。结果:shRNA能有效抑制CENP-E mRNA和蛋白的表达。MTT结果显示CENP-E下调后MCF-7细胞的增殖能力减弱(P<0.05);流式细胞术显示下调CENP-E后能促进MCF-7细胞的凋亡;间接荧光结果显示CENP-E干扰后MCF-7细胞内CENP-E蛋白减少并伴有核分裂异常;Transwell试验显示CENP-E干扰组细胞的迁移和侵袭能力增强(P<0.05)。结论:下调部分CENP-E的表达能抑制MCF-7细胞的增殖,促进MCF-7细胞的凋亡,增强MCF-7细胞的迁移和侵袭能力。  相似文献   
78.
This prospective and multi-centric study confirms the accuracy and the limitations of interphase FISH and shows that any cytogenetics laboratory can perform this technique. With regard to the technical approach, we think that slides must be examined by two investigators, because the scoring may be subjective. The main problem with the AneuVysion kit concerns the alpha satellite probes, and especially the chromosome 18 probe, which is sometimes very difficult to interpret because of the high variability of the size of the spots, and this may lead to false negative and uninformative cases. The best solution would be to replace these probes by locus-specific probes. Concerning clinical management, we offer interphase FISH only in very high-risk pregnancies or/and at late gestational age because of the cost of the test. We think that an aberrant FISH result can be used for a clinical decision when it is associated with a corresponding abnormal ultrasound scan. In other cases, most of the time, we prefer to wait for the standard karyotype.  相似文献   
79.
Aneuploidy, the gain or loss of large regions of the genome, is a common feature in cancer cells. Irregularities in chromosomal copy number caused by missegregations of chromosomes during mitosis can be visualized by cytogenetic techniques including fluorescence in situ hybridization (FISH), spectral karyotyping (SKY) and comparative genomic hybridization (CGH). In the current work, we consider the propagation of irregular copy numbers throughout a cell population as the individual cells progress through ordinary mitotic cell cycles. We use an algebraic model to track the different copy numbers as states in a stochastic process, based on the model of chromosome instability of Gusev, Kagansky, and Dooley, and consider the average copy number of a particular chromosome within a cell population as a function of the cell division rate. We review a number of mathematical models for determining the length of the cell cycle, including the Smith-Martin transition probability model and the 'sloppy size' model of Wheals, Tyson and Diekmann. The program MITOSIM simulates the growth of a population of cells using the aforementioned models of the cell cycle. MITOSIM allows the cell population to grow, with occasional resampling, until the average copy number of a given chromosome in the population reaches a preset threshold signifying a positive copy number alteration in this region. MITOSIM calculates the relationship between the missegregation rate and the growth rate of the cell population. This allows the user to test hypotheses regarding the effect chromosomal aberrations have upon the cell cycle, cell growth rates, and time to population dominance.  相似文献   
80.
Summary Transmission of extra genome chromosomes by three Vaccinium ashei (2n=6x=72)/V. corymbosum (2n=4x=48) pentaploid hybrids backcrossed to the hexaploid species V. ashei was examined. Chromosome numbers were determined for 36 and 31 progeny representing 5x × 6x and 6x × 5x type crosses, respectively. Chromosome numbers ranged from hypopentaploid (2n=4x+11=59) to hexaploid with means of 2n=66.2 for 5x × 6x progeny and 2n=68.0 for 6x × 5x progeny, representing overall extra genome chromosome gains of 3.3% and 33.3%, respectively. Extra chromosome number distributions for both the 5x × 6x and x × 5x progeny deviated significantly from the theoretical distribution assuming random chromosome transmission and were also found to be heterogeneous. The 2n=5x+9=69 class predominated in 6x × 5x progeny, while a predominate class was lacking in the 5x × 6x progeny. Higher than expected frequencies of plants with chromosome numbers near the pentaploid and hexaploid levels were found in the 5x × 6x progeny, whereas the frequency was only greater at the hexaploid number in 6x × 5x progeny. Present and previous results (Vorsa et al. 1986) indicate that extra genome chromosome transmission in oddploids can be influenced by selection at both gametophytic (pollen) and post-zygotic stages. However, post-zygotic selection may involve two different mechanisms acting concurrently: 1) chromosome imbalance due to aneuploidy and/or 2) endosperm imbalance referring to maternal: paternal genome ratios deviating from 21. Such a mechanism could result in differential transmission rates of extra genome chromosomes in oddploids when crosses are made to differing ploidy levels, and to reciprocal differences as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号