首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   610篇
  免费   89篇
  国内免费   16篇
  2024年   2篇
  2023年   10篇
  2022年   12篇
  2021年   43篇
  2020年   38篇
  2019年   46篇
  2018年   33篇
  2017年   42篇
  2016年   24篇
  2015年   25篇
  2014年   69篇
  2013年   56篇
  2012年   32篇
  2011年   37篇
  2010年   21篇
  2009年   16篇
  2008年   29篇
  2007年   25篇
  2006年   26篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   9篇
  1999年   10篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1973年   3篇
  1972年   1篇
排序方式: 共有715条查询结果,搜索用时 265 毫秒
61.
目的:探讨中国近15年腹茧症的流行病学特征和诊疗经验.方法:总结中国1994年1月-2009年1月问的腹茧症文献资料.结果:中国近15年共报道903例腹茧症,男女比例为1:1.35,平均年龄33.14岁,51.7%分布在华东地区,90.5%以不同表现形式的肠梗阻为主要表现,70.5%属于弥漫型腹茧症,40.2%患者无大网膜,手术以包膜切除为主.结论:腹茧症主要分布在华东地区,术前诊断困难,切除包膜和松解粘连是治疗本病的有效方法.  相似文献   
62.
目的:探讨细胞内铜/锌超氧化物岐化酶(copper zinc superoxide dismutase,Cu/Zn-SOD,SOD-1)在人胸主动脉夹层(humanthoracic aortic dissection,hTAD)中的表达情况及其在hTAD中的可能作用。方法:蛋白质印迹法(Western blot,WB)检测SOD-1在TAD和正常人胸主动脉(NA)中膜组织中的表达情况,免疫组织化学染色(immunohistochemistry,IHC)验证SOD-1在动脉壁中的表达和定位。结果:蛋白质印迹和免疫组化染色均显示SOD-1在TAD组表达量较NA组减低(P<0.05);免疫组化染色进一步显示,SOD-1主要位于主动脉壁中膜平滑肌细胞的胞质内,其在夹层主动脉壁中膜撕开处表达缺失。结论:SOD-1在TAD中表达量减少,可能由于参与氧化应激引起的脂质过氧化和炎症反应,以及细胞外基质(extracellular matrix,ECM)的降解等机制所致。  相似文献   
63.
Vasodilator effects of peptides derived from egg white proteins   总被引:1,自引:0,他引:1  
The aim of this work was to investigate the effect of several peptides, identified before and after simulated gastrointestinal digestion of an egg white hydrolysate, on the vascular function, in rat aorta. The sequences IVF, RADHPFL and YAEERYPIL (0.1 mM) induced vasodilatation in intact aortic rings, with the maximum percentage of dilation corresponding to RADHPFL (40.5 ± 7.0%). Two of the end products of the gastrointestinal digestion, RADHP and YPI, also showed vasodilator activity with degrees of relaxation higher than 50%. However, all these peptides failed to induce relaxation in endothelium-denuded aortic rings. The relaxation induced by RADHP was concentration-dependent and it was partially blocked by the nitric oxide synthase inhibitor l-NAME (100 μM) and by the B1 bradykinin receptor antagonist Des-HOE 140 (30 nM), thus showing that it was mediated by NO production through the activation of B1 bradykinin receptors. These findings suggest that these peptides could reduce the vascular resistance and could be used as functional food ingredients in the prevention and treatment of hypertension.  相似文献   
64.
SPARC (secreted protein acidic and rich in cysteine), although primarily known as a secreted, matricellular protein, has also been identified in urothelial cell nuclei. Many biological activities, including inhibition of cell adhesion and repression of DNA synthesis, have been ascribed to SPARC, but the influence of its intracellular localization on each of these activities is unknown. When exposed by epitope retrieval and nuclear matrix unmasking techniques, endogenous SPARC was found to localize strongly to the nuclei and the nuclear matrix of cultured urothelial cells. Live-cell time-lapse imaging revealed that exogenous fluorescently labeled recombinant (r) SPARC was taken up from medium over a 16 h period and accumulated inside cells. Two variants of rSPARC with alterations in its putative nuclear localization signal (NLS) were generated to investigate the existence and effects of the NLS. These variants demonstrated similar biophysical characteristics as the wild-type protein. Visualization by a variety of techniques, including live-cell imaging, deconvolution microscopy, and cell fractionation, all concurred that exogenous rSPARC was not able to localize to cell nuclei, but instead accumulated as perinuclear clusters. Localization of the rSPARC NLS variants was no different than wild-type, arguing against the presence of an active NLS in rSPARC. Imaging experiments showed that only permeabilized, dead cells avidly took up rSPARC into their nuclei. The rSPARC(no NLS) variant proved ineffective at inhibiting DNA synthesis, whereas the rSPARC(strong NLS) variant was a more potent inhibitor of DNA synthesis than was wild-type rSPARC. The motif of SPARC that inhibits the synthesis of urothelial cell DNA is therefore not a nuclear localization signal, but its manipulation holds therapeutic potential to generate a "Super-SPARC" that can quiesce proliferative tissues.  相似文献   
65.
Abdominal aortic aneurysm (AAA) is commonly associated with atherosclerosis. Human AAA tissue displays cells undergoing all stages of apoptosis. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumour cells but not in normal cells. It has death receptors and decoy receptors. An inhibitor of TRAIL, osteoprotegerin (OPG), is involved in osteogenesis and vascular calcification. We investigated TRAIL and its receptors in AAA compared within normal aorta (NA). Both qualitative and quantitative analyses of calcification in AAA walls were determined using Von Kossa staining and pre-operation computer tomography (CT) scans. There was a significant difference in calcification level at different locations in the AAA wall (p <0.05). Apoptosis was confirmed in AAA by TUNEL assay. A significant difference in TRAIL and its receptor expression was observed between normal aortae and AAA (p<0.05). Significant differences were also observed between tissues displaying different extents of calcification for TRAIL mRNA (p<0.05) by RT-PCR examination and OPG protein (p<0.01) by protein blotting examination. We propose that this pattern of expression of TRAIL and its receptors may contribute to AAA formation and calcification in the AAA wall.  相似文献   
66.
Since the fifteenth century beginning with Leonardo da Vinci's studies, the precise structure and functional dynamics of the aortic root throughout the cardiac cycle continues to elude investigators. The last five decades of experimental work have contributed substantially to our current understanding of aortic root dynamics. In this article, we review and summarize the relevant structural analyses, using radiopaque markers and sonomicrometric crystals, concerning aortic root three-dimensional deformations and describe aortic root dynamics in detail throughout the cardiac cycle. We then compare data between different studies and discuss the mechanisms responsible for the modes of aortic root deformation, including the haemodynamics, anatomical and temporal determinants of those deformations. These modes of aortic root deformation are closely coupled to maximize ejection, optimize transvalvular ejection haemodynamics and-perhaps most importantly-reduce stress on the aortic valve cusps by optimal diastolic load sharing and minimizing transvalvular turbulence throughout the cardiac cycle. This more comprehensive understanding of aortic root mechanics and physiology will contribute to improved medical and surgical treatment methods, enhanced therapeutic decision making and better post-intervention care of patients. With a better understanding of aortic root physiology, future research on aortic valve repair and replacement should take into account the integrated structural and functional asymmetry of aortic root dynamics to minimize stress on the aortic cusps in order to prevent premature structural valve deterioration.  相似文献   
67.
Each heart valve is composed of different structures of which each one has its own histological profile. Although the aortic and the pulmonary valves as well as the mitral and the tricuspid valves show similarities in their architecture, they are individually designed to ensure optimal function with regard to their role in the cardiac cycle.In this article, we systematically describe the structural elements of the four heart valves by different anatomical, light- and electron-microscopic techniques that have been presented. Without the demand of completeness, we describe main structural features that are in our opinion of importance in understanding heart valve performance. These features will also have important implications in the treatment of heart valve disease. They will increase the knowledge in the design of valve substitutes or partial substitutes and may participate to improve reconstructive techniques. In addition, understanding heart valve macro- and microstructure may also be of benefit in heart valve engineering techniques.  相似文献   
68.
69.
In humans, thromboxane (TX) A2 signals through the TPα and TPβ isoforms of its G-protein coupled TXA2 receptor (TP) to mediate a host of (patho)physiologic responses. Herein, angio-associated migratory cell protein (AAMP) was identified as a novel interacting partner of both TPα and TPβ through an interaction dependent on common (residues 312-328) and unique (residues 366-392 of TPβ) sequences within their carboxyl-terminal (C)-tail domains. While the interaction was constitutive in mammalian cells, agonist-stimulation of TPα/TPβ led to a transient dissociation of AAMP from immune complexes which coincided with a transient redistribution of AAMP from its localization in an intracellular fibrous network. Although the GTPase RhoA is a downstream effector of both AAMP and the TPs, AAMP did not influence TP-mediated RhoA or vice versa. Small interfering RNA (siRNA)-mediated disruption of AAMP expression decreased migration of primary human coronary artery smooth muscle cells (1° hCoASMCs). Moreover, siRNA-disruption of AAMP significantly impaired 1° hCoASMC migration in the presence of the TXA2 mimetic U46619 but did not affect VEGF-mediated cell migration. Given their roles within the vasculature, the identification of a specific interaction between TPα/TPβ and AAMP is likely to have substantial functional implications for vascular pathologies in which they are both implicated.  相似文献   
70.
The notion that dietary flavonoids exert beneficial health effects in humans is often based on in vitro studies using the glycoside or aglycone forms of these flavonoids. However, flavonoids are extensively metabolized in humans, resulting in the formation of glucuronide, methyl, and sulfate derivatives, which may have different properties than their parent compounds. The goal of this study was to investigate whether different chemical modifications of the same flavonoid molecule affect its biological and antioxidant activities. Hence, we studied the anti-inflammatory effects of several major human metabolites of quercetin and (-)-epigallocatechin-3-O-gallate (EGCG) by assessing their inhibitory effects on tumor necrosis factor α (TNFα)-induced protein expression of cellular adhesion molecules in human aortic endothelial cells (HAEC). HAEC were incubated with 1-30 μM quercetin, 3'- or 4'-O-methyl-quercetin, quercetin-3-O-glucuronide, and quercetin-3'-O-sulfate or 20-100 μM EGCG, 4'-O-methyl-EGCG, and 4',4'-di-O-methyl-EGCG, prior to coincubation with 100 U/ml of TNFα. 3'-O-Methyl-quercetin, 4'-O-methyl-quercetin, and their parent aglycone compound, quercetin, all effectively inhibited expression of intercellular adhesion molecule-1 (ICAM-1) with IC(50) values (concentration required for 50% inhibition) of 8.0, 5.0, and 4.4 μM, respectively; E-selectin expression was suppressed to a somewhat lesser but still significant degree by all three compounds, whereas vascular cell adhesion molecule-1 (VCAM-1) was not affected. In contrast, quercetin-3-O-glucuronide (20-100 μM), quercetin-3'-O-sulfate (10-30 μM), and phenolic acid metabolites of quercetin (20-100 μM) did not inhibit adhesion molecule expression. 4',4'-Di-O-methyl-EGCG selectively inhibited ICAM-1 expression with an IC(50) value of 94 μM, whereas EGCG (20-60 μM) and 4'-O-methyl-EGCG (20-100 μM) had no effect. The inhibitory effects of 3'-O-methyl-quercetin and 4',4'-di-O-methyl-EGCG on adhesion molecule expression were not related either to inhibition of NF-κB activation or to their antioxidant reducing capacity. Our data indicate that flavonoid metabolites have different biological and antioxidant properties than their parent compounds, and suggest that data from in vitro studies using nonmetabolites of flavonoids are of limited relevance in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号