首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15173篇
  免费   1179篇
  国内免费   887篇
  2024年   26篇
  2023年   187篇
  2022年   277篇
  2021年   794篇
  2020年   479篇
  2019年   621篇
  2018年   593篇
  2017年   423篇
  2016年   588篇
  2015年   890篇
  2014年   998篇
  2013年   1104篇
  2012年   1337篇
  2011年   1222篇
  2010年   766篇
  2009年   670篇
  2008年   758篇
  2007年   708篇
  2006年   598篇
  2005年   525篇
  2004年   473篇
  2003年   379篇
  2002年   340篇
  2001年   315篇
  2000年   257篇
  1999年   238篇
  1998年   152篇
  1997年   150篇
  1996年   150篇
  1995年   112篇
  1994年   111篇
  1993年   83篇
  1992年   136篇
  1991年   102篇
  1990年   79篇
  1989年   80篇
  1988年   63篇
  1987年   72篇
  1986年   64篇
  1985年   50篇
  1984年   48篇
  1983年   41篇
  1982年   24篇
  1981年   13篇
  1980年   16篇
  1979年   19篇
  1977年   14篇
  1976年   11篇
  1973年   10篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The outer mitochondrial membrane porin, voltage-dependent anion-selective channel (VDAC), is believed to play an important role in mediating mitochondria-dependent apoptosis. However, detailed structure-function studies of VDAC have been hindered by the difficulties to obtain a soluble, correctly folded, and fully active form of the recombinant VDAC and its mutant variants due to its transmembrane nature. Here we report a high-throughput one-step chromatographic procedure in purification of recombinant human VDAC1 (rhVDAC1) protein overexpressed in bacteria. The improved methodology could generate a large quantity of rhVDAC1 with correct folding in terms of the secondary structure, with full biological activities in mediating cytochrome c release and in interaction with Bcl-X(L). The method will significantly benefit genetic, biochemical, and structural studies of this critical channel protein.  相似文献   
992.
Thin films of poly(allylamine hydrochloride) (PAH) and bacteriorhodopsin (bR) embedded in purple membrane (PM) have been prepared by layer-by-layer (LBL) self-assembly technique. The results obtained by UV-Vis spectroscopy and atomic force microscopy (AFM) analysis showed that the biological activity of bR was preserved and PM fragments could be well oriented onto the ITO substrate. A photo-electrochemical cell with the structure of ITO/(PAH/PM)(n)/electrolyte (0.5M KCl)/Pt was fabricated and studied. The photocurrent peaks of (PAH/PM)(6) corresponding to light-on and light-off were about 200 and 100 nA/cm(2), respectively, with the former enhanced 30% higher than that of the reference films made of (PDAC/PM)(6).  相似文献   
993.
Caveolin-1 null (-/-) mice show dramatic reductions in life span   总被引:7,自引:0,他引:7  
Caveolae are 50-100 nm flask-shaped invaginations of the plasma membrane found in most cell types. Caveolin-1 is the principal protein component of caveolae membranes in nonmuscle cells. The recent development of Cav-1-deficient mice has allowed investigators to study the in vivo functional role of caveolae in the context of a whole animal model, as these mice lack morphologically detectable caveolae membrane domains. Surprisingly, Cav-1 null mice are both viable and fertile. However, it remains unknown whether loss of caveolin-1 significantly affects the overall life span of these animals. To quantitatively determine whether loss of Cav-1 gene expression confers any survival disadvantages with increasing age, we generated a large cohort of mice (n = 180), consisting of Cav-1 wild-type (+/+) (n = 53), Cav-1 heterozygous (+/-) (n = 70), and Cav-1 knockout (-/-) (n = 57) animals, and monitored their long-term survival over a 2 year period. Here, we show that Cav-1 null (-/-) mice exhibit an approximately 50% reduction in life span, with major declines in viability occurring between 27 and 65 weeks of age. However, Cav-1 heterozygous (+/-) mice did not show any changes in long-term survival, indicating that loss of both Cav-1 alleles is required to mediate a reduction in life span. Mechanistically, these dramatic reductions in life span appear to be secondary to a combination of pulmonary fibrosis, pulmonary hypertension, and cardiac hypertrophy in Cav-1 null mice. Taken together, our results provide the first demonstration that loss of Cav-1 gene expression and caveolae organelles dramatically affects the long-term survival of an organism. In addition, aged Cav-1 null mice may provide a new animal model to study the pathogenesis and treatment of progressive hypertrophic cardiomyopathy and sudden cardiac death syndrome.  相似文献   
994.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic halohydrins. To understand the kinetic mechanism and enantioselectivity of the enzyme, steady-state and pre-steady-state kinetic analysis was performed with p-nitro-2-bromo-1-phenylethanol (PNSHH) as a model substrate. Steady-state kinetic analyses indicated that the k(cat) of the enzyme with the (R)-enantiomer (22 s(-1)) is 3-fold higher than with the (S)-enantiomer and that the K(m) for the (R)-enantiomer (0.009 mM) is about 45-fold lower than that for the (S)-enantiomer, resulting in a high enantiopreference for the (R)-enantiomer. Product inhibition studies revealed that HheC follows an ordered Uni Bi mechanism for both enantiomers, with halide as the first product to be released. To identify the rate-limiting step in the catalytic cycle, pre-steady-state experiments were performed using stopped-flow and rapid-quench methods. The results revealed the existence of a pre-steady-state burst phase during conversion of (R)-PNSHH, whereas no such burst was observed with the (S)-enantiomer. This indicates that a product release step is rate-limiting for the (R)-enantiomer but not for the (S)-enantiomer. This was further examined by doing single-turnover experiments, which revealed that during conversion of the (R)-enantiomer the rate of bromide release is 21 s(-1). Furthermore, multiple turnover analyses showed that the binding of (R)-PNSHH is a rapid equilibrium step and that the rate of formation of product ternary complex is 380 s(-1). Taken together, these findings enabled the formulation of an ordered Uni Bi kinetic mechanism for the conversion of (R)-PNSHH by HheC in which all of the rate constants are obtained. The high enantiopreference for the (R)-enantiomer can be explained by weak substrate binding of the (S)-enantiomer and a lower rate of reaction at the active site.  相似文献   
995.
Zhu G  Zhai P  He X  Terzyan S  Zhang R  Joachimiak A  Tang J  Zhang XC 《Biochemistry》2003,42(21):6392-6399
GGAs are a family of vesicle-coating regulatory proteins that function in intracellular protein transport. A GGA molecule contains four domains, each mediating interaction with other proteins in carrying out intracellular transport. The GAT domain of GGAs has been identified as the structural entity that binds membrane-bound ARF, a molecular switch regulating vesicle-coat assembly. It also directly interacts with rabaptin5, an essential component of endosome fusion. A 2.8 A resolution crystal structure of the human GGA1 GAT domain is reported here. The GAT domain contains four helices and has an elongated shape with the longest dimension exceeding 80 A. Its longest helix is involved in two structural motifs: an N-terminal helix-loop-helix motif and a C-terminal three-helix bundle. The N-terminal motif harbors the most conservative amino acid sequence in the GGA GAT domains. Within this conserved region, a cluster of residues previously implicated in ARF binding forms a hydrophobic surface patch, which is likely to be the ARF-binding site. In addition, a structure-based mutagenesis-biochemical analysis demonstrates that the C-terminal three-helix bundle of this GAT domain is responsible for the rabaptin5 binding. These structural characteristics are consistent with a model supporting multiple functional roles for the GAT domain.  相似文献   
996.
Hu W  Feng Z  Tang MS 《Biochemistry》2003,42(33):10012-10023
In the ras gene superfamily, codon 12 (-TGGTG-) of the K-ras gene is the most frequently mutated codon in human cancers. Recently, we have found that bulky chemical carcinogens preferentially form DNA adducts at codons 12 and 14 (-CGTAG-) in the K-ras gene in normal human bronchial epithelial (NHBE) cells. Furthermore, DNA adducts formed at codon 12 of the K-ras gene are poorly repaired compared with those at other codons including codon 14. These results suggest that targeted carcinogen-DNA adduct formation is a major reason for the observed high mutation frequency at codon 12 of the K-ras gene in human cancers. This preferential carcinogen-DNA adduct formation at codons 12 and 14 could result from effects of (1) primary sequences of these codons and their surrounding codons in the K-ras gene, (2) the chromatin structure, and/or (3) epigenetic factors such as C5 cytosine methylation or other DNA modifications at these codons and their surrounding codons. To distinguish these possibilities, we have introduced modifications with benzo[a]pyrene diol epoxide, N-hydroxy-2-aminofluorene, and aflatoxin B1 8,9-epoxide in (1) naked intact genomic DNA isolated from NHBE cells, (2) fragmented genomic DNA digested by restriction enzymes, and (3) in vitro synthesized DNA fragments containing the K-ras gene exon 1 sequence with or without methylation of the cytosines at CpG sites and the cytosines pairing with the guanines of codons 12 and 14. The distribution of carcinogen-DNA adducts in the K-ras gene was mapped at the nucleotide sequence level using the UvrABC nuclease incision method with or without the ligation-mediated polymerase chain reaction technique. We have found that carcinogens preferentially form adducts at codons 12 and 14 in the K-ras gene exon 1 in intact as well as in fragmented genomic DNA. In contrast, this preferential DNA adduct formation at codons 12 and 14 was not observed in PCR-amplified DNA fragments containing the K-ras gene exon 1 sequence. Methylation of the cytosine at the CpG site of codon 14, or the cytosine pairing with guanine of codon 14, greatly enhanced carcinogen-DNA adduct formation at codon 14 but did not affect carcinogen-DNA adduct formation at codon 12. Methylation of the cytosine pairing with the guanine of codon 12 also did not enhance carcinogen-DNA adduct formation at codon 12. Furthermore, we found that the cytosine at the CpG site of codon 14 is highly methylated in NHBE cells. These results suggest that cytosine methylation at the CpG site is the major reason for the preferential DNA damage at codon 14 and that epigenetic modification(s) other than cytosine methylation may contribute to the preferential DNA damage at codon 12 of the K-ras gene.  相似文献   
997.
Yushmanov VE  Mandal PK  Liu Z  Tang P  Xu Y 《Biochemistry》2003,42(13):3989-3995
The structure and backbone dynamics of an extended second transmembrane segment (TM2e) of the human neuronal glycine receptor alpha(1) subunit in sodium dodecyl sulfate micelles were studied by (1)H and (15)N solution-state NMR. The 28-amino acid segment contained the consensus TM2 domain plus part of the linker between the second and third transmembrane domains. The presence of a well-structured helical region of at least 13 amino acids long and an unstructured region near the linker was evident from the proton chemical shifts and the pattern of midrange nuclear Overhauser effects (NOE). (15)N relaxation rate constants, R(1) and R(2), and (15)N-[(1)H] NOE indicated restricted internal motions in the helical region with NOE values between 0.6 and 0.8. The squared order parameter (S(2)), the effective correlation time for fast internal motions (tau(e)), and the global rotational correlation time (tau(m)) were calculated for all TM2e backbone N-H bonds using the model-free approach. The S(2) values ranged about 0.75-0.86, and the tau(e) values were below 100 ps for most of the residues in the helical region. The tau(m) value, calculated from the dynamics of the helical region, was 5.1 ns. The S(2) values decreased to 0.1, and the tau(e) values sharply increased up to 1.2 ns at the linker near the C-terminus, indicating that the motion of this region is unrestricted. The results suggest a relatively high degree of motional freedom of TM2e in micelles and different propensities of the N- and C-terminal moieties of the transmembrane domain to assume stable helical structures.  相似文献   
998.
Chan IS  Tang NS  Tang ML  Chan PS 《Biometrics》2003,59(4):1170-1177
Testing of noninferiority has become increasingly important in modern medicine as a means of comparing a new test procedure to a currently available test procedure. Asymptotic methods have recently been developed for analyzing noninferiority trials using rate ratios under the matched-pair design. In small samples, however, the performance of these asymptotic methods may not be reliable, and they are not recommended. In this article, we investigate alternative methods that are desirable for assessing noninferiority trials, using the rate ratio measure under small-sample matched-pair designs. In particular, we propose an exact and an approximate exact unconditional test, along with the corresponding confidence intervals based on the score statistic. The exact unconditional method guarantees the type I error rate will not exceed the nominal level. It is recommended for when strict control of type I error (protection against any inflated risk of accepting inferior treatments) is required. However, the exact method tends to be overly conservative (thus, less powerful) and computationally demanding. Via empirical studies, we demonstrate that the approximate exact score method, which is computationally simple to implement, controls the type I error rate reasonably well and has high power for hypothesis testing. On balance, the approximate exact method offers a very good alternative for analyzing correlated binary data from matched-pair designs with small sample sizes. We illustrate these methods using two real examples taken from a crossover study of soft lenses and a Pneumocystis carinii pneumonia study. We contrast the methods with a hypothetical example.  相似文献   
999.
Polyphenol interactions with both cellulose and collagen in the solid state have been studied by using chromatography on cellulose and by evaluating the hydrothermal stability of the polyphenol treated sheepskin collagen. Twenty-four polyphenolic compounds were studied, including seven glucose-based gallotannins, five polyalcohol-based gallotannins, and twelve ellagitannins. In the cellulose-polyphenols systems, the polyphenol's affinity to cellulose is positively correlated with their molecular masses, the number of galloyl groups, and their hydrophobicity (logP). The polyphenol treatment increased the hydrothermal stability of collagen samples, and such effects are also positively correlated with the molecular masses, total number of galloyl groups and the hydrophobicity of polyphenols. Ellagitannins showed much weaker interactions with both biopolymers than gallotannins having similar molecular mass, the same number of galloyl groups, and the same number of phenolic hydroxyl groups. It is concluded that, for the polyphenol interactions with both cellulose and collagen, (1) the galloyl group of polyphenols is the functional group; (2) the strength of interactions are positively correlated with molecular size, the number of galloyl groups and the hydrophobicity of polyphenols; (3) the hydrophobic interactions are of great significance; and (4) the interactions are strongly dependent on the flexibility of galloyl groups.  相似文献   
1000.
Mutant alleles of Ras maintain an activated, GTP-bound conformation and relay mitogenic signals that cannot be turned off. A genetic selection in Saccharomyces cerevisiae was used to identify peptide aptamers that suppress the growth arrest phenotype of an activated Ras allele. Peptide aptamers were expressed as C-terminal fusions to glutathione-S-transferase. Modifications that alter the coding capacity of the peptide aptamer indicate it is necessary for Ras2-Val19 suppression. Aptamer expression also reduces the elevated levels of cAMP and suppresses the heat shock sensitivity characteristic of Ras-activated yeast cells. The peptide aptamer retains suppressor activity when fused to thioredoxin. The peptide aptamer expression strategy described here indicates that aptamers presented as unconstrained peptides have functional capacity in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号