首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   36篇
  国内免费   2篇
  2023年   13篇
  2022年   8篇
  2021年   22篇
  2020年   15篇
  2019年   21篇
  2018年   38篇
  2017年   24篇
  2016年   28篇
  2015年   30篇
  2014年   70篇
  2013年   53篇
  2012年   58篇
  2011年   71篇
  2010年   46篇
  2009年   32篇
  2008年   46篇
  2007年   52篇
  2006年   53篇
  2005年   41篇
  2004年   35篇
  2003年   24篇
  2002年   27篇
  2001年   16篇
  2000年   9篇
  1999年   6篇
  1997年   1篇
  1996年   8篇
  1995年   4篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1981年   4篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1958年   1篇
  1931年   1篇
排序方式: 共有907条查询结果,搜索用时 62 毫秒
41.
Okamoto Y  Obeid LM  Hannun YA 《FEBS letters》2002,530(1-3):104-108
Recent studies demonstrate a role for intracellular oxidation in the regulation of neutral sphingomyelinase (N-SMase). Glutathione (GSH) has been shown to regulate N-SMase in vitro and in cells. However, it has not been established whether the effects of GSH in cells are due to direct action on N-SMase. In this study, treatment of human mammary carcinoma MCF-7 cells with diamide, a thiol-depleting agent, caused a decrease in intracellular GSH and degradation of sphingomyelin (SM) to ceramide. The SM pool hydrolyzed in response to diamide belonged to the bacterial SMase-resistant pool of SM. Importantly, pretreatment of MCF-7 cells with GSH, N-acetylcysteine, an antioxidant, or GW69A, a specific N-SMase inhibitor, prevented diamide-induced degradation of SM to ceramide, suggesting that intracellular levels of GSH regulate the extent to which SM is degraded to ceramide and that this probably involves a GW69A-sensitive N-SMase. Unexpectedly, expression of Bcl-xL prevented tumor necrosis factor--induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. Furthermore, Bcl-xL inhibited diamide-induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. These results suggest that the site of action of Bcl-xL is downstream of GSH depletion and upstream of ceramide accumulation, and that GSH probably does not exert direct physiologic effects on N-SMase.  相似文献   
42.
Phosphatidic acid (PA) has been identified as a bioactive lipid second messenger, yet despite extensive investigation, no cellular target has emerged as a mediator of its described biological effects. In this study, we identify the gamma isoform of the human protein phosphatase-1 catalytic subunit (PP1c gamma) as a high affinity in vitro target of PA. PA inhibited the enzyme dose-dependently with an IC(50) of 15 nm. Mechanistically, PA inhibited the enzyme noncompetitively with the kinetics of a tight binding inhibitor and a K(i) value of 0.97 +/- 0.24 nm. Together, these data describe one of the most potent in vitro effects of PA. To further elucidate the interaction between PA and PP1c gamma, structure/function analysis of the lipid was carried out using commercially available and synthetically generated analogs of PA. These studies disclosed that the lipid-protein interaction is dependent on the presence of the lipid phosphate as well as the presence of the fatty acid side chains, because lipids lacking either of these substituents resulted in complete loss of inhibition. However, the specific composition of the fatty acid side chains was not important for inhibition. Using 1-O-hexadecyl,2-oleoyl-PA, it was also shown that the carbonyl group of the sn-1 acyl linkage is not required for the lipid-protein interaction. Finally, using a lipid-protein overlay assay, it was demonstrated that PP1c gamma specifically and directly interacts with phosphatidic acid while not significantly binding other phospholipids. These results identify PA as a tight binding and specific inhibitor of PP1, and they raise the hypothesis that PP1c gamma may function as a mediator of PA action in cells. They also argue for the existence of a specific high affinity PA-binding domain on the enzyme.  相似文献   
43.
Recent studies are beginning to implicate sphingolipids in the heat stress response. In the yeast Saccharomyces cerevisiae, heat stress has been shown to activate de novo biosynthesis of sphingolipids, whereas in mammalian cells the sphingolipid ceramide has been implicated in the heat shock responses. In the current study, we found an increase in the ceramide mass of Molt-4 cells in response to heat shock, corroborating findings in HL-60 cells. Increased ceramide was determined to be from de novo biosynthesis by two major lines of evidence. First, the accumulation of ceramide was dependent upon the activities of both ceramide synthase and serine palmitoyltransferase. Second, pulse labeling studies demonstrated increased production of ceramide through the de novo biosynthetic pathway. Significantly, the de novo sphingolipid biosynthetic pathway was acutely induced upon heat shock, which resulted in a 2-fold increased flux in newly made ceramides within 1-2 min of exposure to 42.5 degrees C. Functionally, heat shock induced the dephosphorylation of the SR proteins, and this effect was demonstrated to be dependent upon the accumulation of de novo-produced ceramides. Thus, these studies disclose an evolutionary conserved activation of the de novo pathway in response to heat shock. Moreover, SR dephosphorylation is emerging as a specific downstream target of accumulation of newly made ceramides in mammalian cells.  相似文献   
44.
Biosorption of chromium(VI) on to cone biomass of Pinus sylvestris was studied with variation in the parameters of pH, initial metal ion concentration and agitation speed. The biosorption of Cr(VI) was increased when pH of the solution was decreased from 7.0 to 1.0. The maximum chromium biosorption occurred at 150 rpm agitation. An increase in chromium/biomass ratio caused a decrease in the biosorption efficiency. The adsorption constants were found from the Freundlich isotherm at 25 degrees C. The cone biomass, which is a readily available biosorbent, was found suitable for removing chromium from aqueous solution.  相似文献   
45.
Yeast ISC1 (Yer019w) encodes inositolphosphosphingolipid-phospholipase C and is activated by phosphatidylserine (PS) and cardiolipin (CL) (Sawai, H., Okamoto, Y., Lubert, C., Mao, C., Bielawska, A., Domae, M., and Hannun, Y. A. (2000) J. Biol. Chem. 275, 39793-39798). In this study, the structural requirements for anionic phospholipid-selective binding of ISC1 were determined using site-directed and deletion mutants. FLAG-tagged Isc1p was activated by PS, CL, and phosphatidylglycerol (PG) in a dose-dependent manner. Using lipid-protein overlay assays, Isc1p interacted specifically and directly with PS/CL/PG. Lipid-protein binding studies of a series of deletion mutants demonstrated that the second transmembrane domain (TMII) and the C terminus were required for PS binding. Moreover, the TMII and the C terminus domain were sufficient to impart PS binding to a heterologous protein, green fluorescence protein. In addition, mutations of positively charged amino acid residues at the C terminus of ISC1 reduced the activating effects of PS, suggesting involvement of these amino acids in interaction with PS/CL/PG and in the activation of the enzyme. Finally, when separate fragments containing the N terminus-TMI and TMII-C terminus were expressed heterologously, enzyme activity was reconstituted, demonstrating that the interaction of the N terminus and the C terminus is required for activity of Isc1p. These results raise the hypothesis that in the presence of PS/CL/PG, the catalytic domain in the N terminus of Isc1p is "pulled" to the membrane to interact with substrate. These studies provide unique insights into the properties of ISC1 and define a novel mechanism for activation of enzymes by lipids cofactors.  相似文献   
46.
In this study, we investigated the levels of serum Zn, Cu, Mg, Mn, Fe, ceruloplasmin (Cp), transferrin (Trf), and albumin in laryngeal carcinoma and correlated their levels with the cancer stage. The sera from 35 patients with laryngeal cancer (10 at stage II, 12 at stage III, and 13 at stage IV) were extracted before treatment and compared with those from the healthy control group (n=15). Although serum Fe and Mn concentrations were lower in the laryngeal cancer groups (for all stages) than in the control group, the difference was not statistically significant (p>0.05). The higher Cu (p<0.001) and Cp (p<0.01) and lower Zn (p<0.01), Mg (p<0.001), and Trf (p<0.01) concentrations were found in laryngeal cancer groups (for each stage) when compared to the control group. In the comparison of stages II, III, and IV (with each other), all parameters were found to be statistically not significant (p>0.05). On the other hand, no meaningful difference was found in terms of the serum albumin level. In our opinion, alterations in the level of trace elements and antioxidant proteins, important for many metabolic processes, in laryngeal cancer may not be a reason for but is, in fact, a consequence of the disease itself.  相似文献   
47.
A low expense process is developed for recovering esterified eicosapentaenoic acid (EPA) from microalgae and fish oil. Over 70% of the EPA content in the esterified crude extract of microalgae were recovered at purities exceeding 90%. The recovery scheme utilizes either wet or freeze-dried algal biomass. The process consists of only three main steps: 1) simultaneous extraction and transesterification of the algal biomass; 2) argentated silica gel column chromatography of the crude extract; and 3) removal of pigments by a second column chromatographic step. Argentated silica gel chromatography recovered about 70% of the EPA ester present in the crude fatty ester mixture of fish oil, but at a reduced purity ( approximately 83% pure) compared to the microalgal derived EPA. The optimal loading of the fatty ester mixture on the chromatographic support was about 3% (w/w) but loadings up to 4% did not affect the resolution significantly. The process was scaled up by a factor of nearly 320 by increasing the diameter of the chromatography columns. The elution velocity remained constant. Compared to the green alga Monodus subterraneus, the diatom Phaeodactylum tricornutum had important advantages as a potential commercial producer of EPA. For a microalgal EPA process to be competitive with fish oil derived EPA, P. tricornutum biomass (2.5% w/w EPA) needs to be obtained at less than $4/kg. If the EPA content in the alga are increased to 3.5%, the biomass may command a somewhat higher price. The quality of microalgal EPA compares favorably with that of the fish oil product. Compared to free fatty acid, EPA ester is more stable in storage. Shelf-life is extended by storing in hexane. The silver contamination in the final purified EPA was negligibly small (<210 ppb).  相似文献   
48.
High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil nitrogen (TSN) content in enclosures and communal grazing lands across varying woody cover i.e. woody encroachment levels. Estimated mean SOC and TSN stocks at 0–40 cm depth varied across grazing regimes and among woody encroachment levels. The open grazing land at the heavily encroached site on sandy loam soil contained the least SOC (30 ± 2.1 Mg ha-1) and TSN (5 ± 0.57 Mg ha-1) while the enclosure at the least encroached site on sandy clay soil had the greatest mean SOC (81.0 ± 10.6 Mg ha-1) and TSN (9.2 ± 1.48 Mg ha-1). Soil OC and TSN did not differ with grazing exclusion at heavily encroached sites, but were twice as high inside enclosure compared to open grazing soils at low encroached sites. Mean SOC and TSN in soils of 0–20 cm depth were up to 120% higher than that of the 21–40 cm soil layer. Soil OC was positively related to TSN, cation exchange capacity (CEC), but negatively related to sand content. Our results show that soil OC and TSN stocks are affected by grazing, but the magnitude is largely influenced by woody encroachment and soil texture. We suggest that improving the herbaceous layer cover through a reduction in grazing and woody encroachment restriction are the key strategies for reducing SOC and TSN losses and, hence, for climate change mitigation in semi-arid rangelands.  相似文献   
49.
Gaucher’s disease is caused by defects in acid β-glucosidase 1 (GBA1) and has been also proposed as an inflammatory disease. GBA1 cleaves glucosylceramide to form ceramide, an established bioactive lipid, and defects in GBA1 lead to aberrant accumulation in glucosylceramide and insufficient formation of ceramide. We investigated if the pro-inflammatory kinase p38 is activated in Gaucher’s disease, since ceramide has been proposed to suppress p38 activation. Three Gaucher’s disease mouse models were employed, and p38 was found to be activated in lung and liver tissues of all Gaucher’s disease mice. Most interestingly, neuronopathic Gaucher’s disease type mice, but not non-neuronopathic ones, displayed significant activation of p38 and up-regulation of p38-inducible proinflammatory cytokines in brain tissues. In addition, all type of Gaucher’s disease mice also showed increases in serum IL-6. As cellular signalling is believed to represent an in vivo inflammatory phenotype in Gaucher’s disease, activation of p38 and possibly its-associated formation of proinflammatory cytokines were assessed in fibroblasts established from neuronopathic Gaucher’s disease mice. In mouse Gaucher’s disease cells, p38 activation and IL-6 formation by TNF-α treatment were enhanced as compared to those of wild type. Furthermore, human fibroblasts from Gaucher’s disease patients also displayed increases in p38 activation and IL-6 formation as comparison to healthy counterpart. These results raise the potential that proinflammatory responses such as p38 activation and IL-6 formation are augmented in Gaucher’s disease.  相似文献   
50.
Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the γ-tocopherol methyl transferase (γ-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of α-tocopherol, the most active form of all the tocopherols. Tocopherol levels have been shown to increase in response to a variety of abiotic stresses. In the present study on Brassica juncea, we found that salt, heavy metal and osmotic stress induced an increase in the total tocopherol levels. Measurements of seed germination, shoot growth and leaf disc senescence showed that transgenic Brassica juncea plants overexpressing the γ-TMT gene had enhanced tolerance to the induced stresses. Analysis of the chlorophyll a fluorescence rise kinetics, from the initial “O” level to the “P” (the peak) level, showed that there were differential effects of the applied stresses on different sites of the photosynthetic machinery; further, these effects were alleviated in the transgenic (line 16.1) Brassica juncea plants. We show that α-tocopherol plays an important role in the alleviation of stress induced by salt, heavy metal and osmoticum in Brassica juncea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号