首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   31篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   9篇
  2019年   10篇
  2018年   7篇
  2017年   13篇
  2016年   19篇
  2015年   26篇
  2014年   20篇
  2013年   14篇
  2012年   39篇
  2011年   46篇
  2010年   37篇
  2009年   18篇
  2008年   44篇
  2007年   31篇
  2006年   22篇
  2005年   35篇
  2004年   29篇
  2003年   33篇
  2002年   27篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1975年   2篇
排序方式: 共有523条查询结果,搜索用时 15 毫秒
31.
32.
33.
The O-polysaccharide (O-antigen) of Providencia stuartii O44:H4 (strain 3768/51) was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, and H-detected (1)H,(13)C HSQC, and HMQC-TOCSY experiments. The O-polysaccharide was found to have a branched hexasaccharide repeating unit of the following structure: [Formula: see text].  相似文献   
34.
Some recently studied biological noncovalent bonds have shown increased lifetime when stretched by mechanical force. In each case these counterintuitive "catch-bonds" have transitioned into ordinary "slip-bonds" that become increasingly shorter lived as the tensile force on the bond is further increased. We describe analytically how these results are supported by a physical model whereby the ligand escapes the receptor binding site via two alternative routes, a catch-pathway that is opposed by the applied force and a slip-pathway that is promoted by force. The model predicts under what conditions and at what critical force the catch-to-slip transition would be observed, as well as the degree to which the bond lifetime is enhanced at the critical force. The model is applied to four experimentally studied systems taken from the literature, involving the binding of P- and L-selectins to sialyl Lewis(X) oligosaccharide-containing ligands. Good quantitative fit to the experimental data is obtained, both for experiments with a constant force and for experiments where the force increases linearly with time.  相似文献   
35.
The O-polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O57:H29. Studies by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments, showed that the polysaccharide contains an amide of D-galacturonic acid with L-alanine and has the following pentasaccharide repeating unit: [formula: see text]  相似文献   
36.
Yersinia pestis spread throughout the Americas in the early 20th century, and it occurs predominantly as a single clone within this part of the world. However, within Eurasia and parts of Africa there is significant diversity among Y. pestis strains, which can be classified into different biovars (bv.) and/or subspecies (ssp.), with bv. orientalis/ssp. pestis most closely related to the American clone. To determine one aspect of the relatedness of these different Y. pestis isolates, the structure of the lipopolysaccharide (LPS) of four wild-type and one LPS-mutant Eurasian/African strains of Y. pestis was determined, evaluating effects of growth at mammalian (37 degrees C) or flea (25 degrees C) temperatures on the structure and composition of the core oligosaccharide and lipid A. In the wild-type clones of ssp. pestis, a single major core glycoform was synthesized at 37 degrees C whereas multiple core oligosaccharide glycoforms were produced at 25 degrees C. Structural differences occurred primarily in the terminal monosaccharides. Only tetraacyl lipid A was made at 37 degrees C, whereas at 25 degrees C additional pentaacyl and hexaacyl lipid A structures were produced. 4-Amino-4-deoxyarabinose levels in lipid A increased with lower growth temperatures or when bacteria were cultured in the presence of polymyxin B. In Y. pestis ssp. caucasica, the LPS core lacked D-glycero-D-manno-heptose and the content of 4-amino-4-deoxyarabinose showed no dependence on growth temperature, whereas the degree of acylation of the lipid A and the structure of the oligosaccharide core were temperature dependent. A spontaneous deep-rough LPS mutant strain possessed only a disaccharide core and a slightly variant lipid A. The diversity and differences in the structure of the Y. pestis LPS suggest important contributions of these variations to the pathogenesis of this organism, potentially related to innate and acquired immune recognition of Y. pestis and epidemiologic means to detect, classify, control and respond to Y. pestis infections.  相似文献   
37.
Studies of the O-polysaccharide chain of the lipopolysaccharide (O-antigen) of Providencia alcalifaciens O19 by sugar and methylation analyses along with NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments, showed that the pentasaccharide repeating unit of the polysaccharide has the following structure: [structure: see text] where Fuc3NAc is 3-acetamido-3,6-dideoxygalactose. The unique structure of the O-antigen and serological data are in consistence with classification of this bacterium in a separate Providencia serogroup.  相似文献   
38.
The O-polysaccharide from the lipopolysaccharide of the phytopathogenic bacterium Pseudomonas syringae pv. mori NCPPB 1656 was studied by sugar analysis along with 1H and 13C NMR spectroscopy and found to be a new beta-(1-->2)-linked homopolymer of L-rhamnose.  相似文献   
39.
The O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of Providencia stuartii O49 was studied using sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, ROESY, H-detected 1H, 13C HSQC and HMBC experiments. The polysaccharide was found to have the trisaccharide repeating unit with the following structure: -->6)-beta-D-Galp(1-->3)-beta-D-GalpNAc(1-->4)-alpha-D-Galp(1-->  相似文献   
40.
On mild acid degradation of the lipopolysaccharide of Proteus vulgaris O34, strain CCUG 4669, the O-polysaccharide was cleaved at a glycosyl-phosphate linkage that is present in the main chain. The resultant phosphorylated oligosaccharides and an alkali-treated lipopolysaccharide were studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, and the following structure of the branched tetrasaccharide phosphate repeating unit of the O-polysaccharide was established: [carbohydrate structure: see text]The O-polysaccharide of Proteus mirabilis strain TG 276 was found to have the same structure and, based on the structural and serological data, this strain was proposed to be classified into the same Proteus serogroup O34.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号