首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   13篇
  国内免费   12篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   13篇
  2012年   13篇
  2011年   7篇
  2010年   6篇
  2009年   14篇
  2008年   8篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1948年   1篇
  1923年   1篇
排序方式: 共有199条查询结果,搜索用时 897 毫秒
11.
Aerated hydration (AH) treatments of cauliflower seeds for 12 h (12AH) and 28 h (28AH) at 20 degrees C resulted in improved or reduced storage potential of low or high vigour seeds, respectively. Seeds were stored at their initial seed moisture content (mean 5.5% mc) or at 12% mc at 10 degrees C for 12 months and at 20 degrees C for 4 months. The improved longevity of low vigour seeds was associated with increased K(i) (initial seed viability) and a reduced rate of deterioration (1/sigma) whereas the K(i) of high vigour seeds fell after 28AH and the rate of deterioration increased such that the time to lose one probit of viability decreased from 28.7 to 5.3 months at 10 degrees C and from 10.4 to 1.2 months at 20 degrees C. The improved K(i) of low vigour seeds could be explained by the reduction in the extent of deterioration after AH, as indicated by the increase in germination after cotrolled deterioration (CD), and the possible activation of metabolic repair during treatment. In contrast the reduced germination after CD of AH-treated high vigour seeds was indicative of deterioration as a result of treatment. Both high and low vigour seeds contained constitutive levels of ss-tubulin which increased during AH treatment, the increase being greater in high vigour seeds. High vigour seeds also showed an increase in the proportion of nuclear DNA present as 4C DNA, from 3% (untreated seeds) to 26% (28AH), indicative of germination advancement from the G(1) to G(2) phase of the cell cycle during treatment. This higher proportion of 4C DNA is correlated with the increased sensitivity of seeds to drying and/or storage after AH, leading to their reduced K(i) and storage potential. In contrast, there was little change in %4C in low vigour seeds. Priming in polyethylene glycol (PEG, -1.0 MPa) for 5 d or 13 d also improved the longevity of low vigour seeds stored at their initial and 12% mc at 10 degrees C for 8 months, as reflected in their laboratory and CD germination. In this case, however, the improved longevity of the low vigour seeds following 13 d priming was associated with an increase in 4C DNA from 4% (dry control) to 56% after treatment. The germination of both untreated and primed high vigour seeds remained high throughout the storage period. Increases in the rate of germination (decreased mean germination time) observed after all AH and PEG treatments were not consistently associated with an increase in the proportion of nuclei containing 4C DNA.  相似文献   
12.
Chine tomato yellow leaf curl virus (TYLCV-CHI) and other geminiviruses were analysed with 20 monoclonaI antibodies. It was shown that TYLCV-CHI is serclogicaIly close to Chinese tabacco Ieaf curl virus (TbLCV-CHI). The fragment of TYLCV-CHI DNA including the common region (CR), N-terminal of coat protein gene and AV1 gene was amplified by PCR and cloned, and its DNA sequence was determined. These raults showed that TYLCV-CHI is different from other known geminiviruses in the world, and is a new whitefly-transmitted gerninivirus.  相似文献   
13.
The misguided control of inflammatory signaling has been previously implicated in the pathogenesis of several neurological disorders, including Alzheimer's disease (AD). Induction of tumor necrosis factor-alpha (TNF-α), a central mediator of neuroinflammation, occurs commensurate with the onset of early disease in 3xTg-AD mice, which develop both amyloid plaque and neurofibrillary tangle pathologies in an age- and region-dependent pattern. Herein, we describe regulation inherent to 3xTg-AD neurons, which results in the loss of TNF-α mediated enhancement of inositol 1,4,5 trisphosphate (IP3R)-mediated Ca2+ release. This modulation also leads to significant down-regulation of IP3R signaling following protracted cytokine exposure. Through the experimental isolation of each AD-related transgene, it was determined that expression of the PS1M146V transgene product is responsible for the loss of the TNF-α effect on IP3R-mediated Ca2+ release. Furthermore, it was determined that the suppression of TNF-α receptor expression occurred in the presence of the presenilin transgene. Our findings attribute this familial AD mutation to suppressing a Ca2+-regulated signal cascade potentially intended to “inform” neurons of proximal neuroinflammatory events and trigger compensatory responses for protection of neural transmission.  相似文献   
14.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein.  相似文献   
15.
The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.  相似文献   
16.
Plant–microbe protection symbioses occur when a symbiont defends its host against enemies (e.g., insect herbivores); these interactions can have important influences on arthropod abundance and composition. Understanding factors that generate context-dependency in protection symbioses will improve predictions on when and where symbionts are most likely to affect the ecology and evolution of host species and their associated communities. Of particular relevance are changes in abiotic contexts that are projected to accompany global warming. For example, increased drought stress can enhance the benefits of fungal symbiosis in plants, which may have multi-trophic consequences for plant-associated arthropods. Here, we tracked colonization of fungal endophyte-symbiotic and aposymbiotic Poa autumnalis (autumn bluegrass) by Rhopalosiphum padi (bird-cherry-oat aphids) and their parasitoids (Aphelinus sp.) following manipulations of soil water levels. Endophyte symbiosis significantly reduced plant colonization by aphids. Under low water, symbiotic plants also supported a significantly higher proportion of aphids that were parasitized by Aphelinus and had higher above-ground biomass than aposymbiotic plants, but these endophyte-mediated effects disappeared under high water. Thus, the multi-trophic consequences of plant-endophyte symbiosis were contingent on the abiotic context, suggesting the potential for complex responses in the arthropod community under future climate shifts.  相似文献   
17.
Spatiotemporal analysis of exocytosis in mouse parotid acinar cells   总被引:1,自引:0,他引:1  
Exocrine cells of the digestive system are specialized to secrete protein and fluid in response to neuronal and/or hormonal input. Although morphologically similar, parotid and pancreatic acinar cells exhibit important functional divergence in Ca2+ signaling properties. To address whether there are fundamental differences in exocytotic release of digestive enzyme from exocrine cells of salivary gland versus pancreas, we applied electrophysiological and optical methods to investigate spatial and temporal characteristics of zymogen-containing secretory granule fusion at the single-acinar cell level by direct or agonist-induced Ca2+ and cAMP elevation. Temporally resolved membrane capacitance measurements revealed that two apparent phases of exocytosis were induced by Ca2+ elevation: a rapidly activated initial phase that could not be resolved as individual fusion events and a second phase that was activated after a delay, increased in a staircaselike fashion, was augmented by cAMP elevation, and likely reflected both sequential compound and multivesicular fusion of zymogen-containing granules. Optical measurements of exocytosis with time-differential imaging analysis revealed that zymogen granule fusion was induced after a minimum delay of 200 ms, occurred initially at apical and basolateral borders of acinar cells, and under strong stimulation proceeded from apical pole to deeper regions of the cell interior. Zymogen granule fusions appeared to coordinate subsequent fusions and produced persistent structures that generally lasted several minutes. In addition, parotid gland slices were used to assess secretory dynamics in a more physiological context. Parotid acinar cells were shown to exhibit both similar and divergent properties compared with the better-studied pancreatic acinar cell regarding spatial organization and kinetics of exocytotic fusion of zymogen granules. membrane capacitance; differential imaging; zymogen; gland slice; exocrine cells  相似文献   
18.
Calcium and mitochondria   总被引:8,自引:0,他引:8  
The literature suggests that the physiological functions for which mitochondria sequester Ca(2+) are (1). to stimulate and control the rate of oxidative phosphorylation, (2). to induce the mitochondrial permeability transition (MPT) and perhaps apoptotic cell death, and (3). to modify the shape of cytosolic Ca(2+) pulses or transients. There is strong evidence that intramitochondrial Ca(2+) controls both the rate of ATP production by oxidative phosphorylation and induction of the MPT. Since the results of these processes are so divergent, the signals inducing them must not be ambiguous. Furthermore, as pointed out by Balaban [J. Mol. Cell. Cardiol. 34 (2002 ) 11259-11271], for any repetitive physiological process dependent on intramitochondrial free Ca(2+) concentration ([Ca(2+)](m)), a kind of intramitochondrial homeostasis must exist so that Ca(2+) influx during the pulse is matched by Ca(2+) efflux during the period between pulses to avoid either Ca(2+) buildup or depletion. In addition, mitochondrial Ca(2+) transport modifies both spatial and temporal aspects of cytosolic Ca(2+) signaling. Here, we look at the amounts of Ca(2+) necessary to mediate the functions of mitochondrial Ca(2+) transport and at the mechanisms of transport themselves in order to set up a hypothesis about how the mechanisms carry out their roles. The emphasis here is on isolated mitochondria and on general mitochondrial properties in order to focus on how mitochondria alone may function to fulfill their physiological roles even though the interactions of mitochondria with other organelles, particularly with endoplasmic and sarcoplasmic reticulum [Sci. STKE re1 (2004) 1-9], may also influence this story.  相似文献   
19.
We construct a mathematical model of the parotid acinar cell with the aim of investigating how the distribution of K+ and Cl channels affects saliva production. Secretion of fluid is initiated by Ca2+ signals acting on Ca2+ dependent K+ and Cl channels. The opening of these channels facilitates the movement of Cl ions into the lumen which water follows by osmosis. We use recent results into both the release of Ca2+ from internal stores via the inositol (1,4,5)-trisphosphate receptor (IP3R) and IP3 dynamics to create a physiologically realistic Ca2+ model which is able to recreate important experimentally observed behaviours seen in parotid acinar cells. We formulate an equivalent electrical circuit diagram for the movement of ions responsible for water flow which enables us to calculate and include distinct apical and basal membrane potentials to the model. We show that maximum saliva production occurs when a small amount of K+ conductance is located at the apical membrane, with the majority in the basal membrane. The maximum fluid output is found to coincide with a minimum in the apical membrane potential. The traditional model whereby all Cl channels are located in the apical membrane is shown to be the most efficient Cl channel distribution.  相似文献   
20.
In nonexcitable cells, such as exocrine cells from the pancreas and salivary glands, agonist-stimulated Ca2+ signals consist of both Ca2+ release and Ca2+ influx. We have investigated the contribution of these processes to membrane-localized Ca2+ signals in pancreatic and parotid acinar cells using total internal reflection fluorescence (TIRF) microscopy (TIRFM). This technique allows imaging with unsurpassed resolution in a limited zone at the interface of the plasma membrane and the coverslip. In TIRFM mode, physiological agonist stimulation resulted in Ca2+ oscillations in both pancreas and parotid with qualitatively similar characteristics to those reported using conventional wide-field microscopy (WFM). Because local Ca2+ release in the TIRF zone would be expected to saturate the Ca2+ indicator (Fluo-4), these data suggest that Ca2+ release is occurring some distance from the area subjected to the measurement. When acini were stimulated with supermaximal concentrations of agonists, an initial peak, largely due to Ca2+ release, followed by a substantial, maintained plateau phase indicative of Ca2+ entry, was observed. The contribution of Ca2+ influx and Ca2+ release in isolation to these near-plasma membrane Ca2+ signals was investigated by using a Ca2+ readmission protocol. In the absence of extracellular Ca2+, the profile and magnitude of the initial Ca2+ release following stimulation with maximal concentrations of agonist or after SERCA pump inhibition were similar to those obtained with WFM in both pancreas and parotid acini. In contrast, when Ca2+ influx was isolated by subsequent Ca2+ readmission, the Ca2+ signals evoked were more robust than those measured with WFM. Furthermore, in parotid acinar cells, Ca2+ readdition often resulted in the apparent saturation of Fluo-4 but not of the low-affinity dye Fluo-4-FF. Interestingly, Ca2+ influx as measured by this protocol in parotid acinar cells was substantially greater than that initiated in pancreatic acinar cells. Indeed, robust Ca2+ influx was observed in parotid acinar cells even at low physiological concentrations of agonist. These data indicate that TIRFM is a useful tool to monitor agonist-stimulated near-membrane Ca2+ signals mediated by Ca2+ influx in exocrine acinar cells. In addition, TIRFM reveals that the extent of Ca2+ influx in parotid acinar cells is greater than pancreatic acinar cells when compared using identical methodologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号