首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2769篇
  免费   168篇
  2023年   23篇
  2022年   31篇
  2021年   89篇
  2020年   48篇
  2019年   67篇
  2018年   67篇
  2017年   71篇
  2016年   119篇
  2015年   159篇
  2014年   169篇
  2013年   211篇
  2012年   236篇
  2011年   246篇
  2010年   122篇
  2009年   105篇
  2008年   195篇
  2007年   172篇
  2006年   142篇
  2005年   130篇
  2004年   128篇
  2003年   89篇
  2002年   113篇
  2001年   17篇
  2000年   12篇
  1999年   16篇
  1998年   11篇
  1997年   17篇
  1996年   9篇
  1995年   4篇
  1994年   9篇
  1993年   13篇
  1992年   15篇
  1991年   5篇
  1990年   5篇
  1989年   10篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   7篇
  1979年   3篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1971年   4篇
  1968年   3篇
排序方式: 共有2937条查询结果,搜索用时 31 毫秒
31.
Atomic force microscopy (AFM) can measure the mechanical properties of plant tissue at the cellular level, but for in situ observations, the sample must be held in place on a rigid support and it is difficult to obtain accurate data for living plants without inhibiting their growth. To investigate the dynamics of root cell stiffness during seedling growth, we circumvented these problems by using an array of glass micropillars as a support to hold an Arabidopsis thaliana root for AFM measurements without inhibiting root growth. The root elongated in the gaps between the pillars and was supported by the pillars. The AFM cantilever could contact the root for repeated measurements over the course of root growth. The elasticity of the root epidermal cells was used as an index of the stiffness. By contrast, we were not able to reliably observe roots on a smooth glass substrate because it was difficult to retain contact between the root and the cantilever without the support of the pillars. Using adhesive to fix the root on the smooth glass plane overcame this issue, but prevented root growth. The glass micropillar support allowed reproducible measurement of the spatial and temporal changes in root cell elasticity, making it possible to perform detailed AFM observations of the dynamics of root cell stiffness.  相似文献   
32.
Hata  Yuki  Kyozuka  Junko 《Plant molecular biology》2021,107(4-5):213-225
Plant Molecular Biology - This review compares the molecular mechanisms of stem cell control in the shoot apical meristems of mosses and angiosperms and reveals the conserved features and evolution...  相似文献   
33.
Biogenic amines such as dopamine are physiologically neuroactive substances that affect behavioral and physiological traits in invertebrates, and it has long been known that these substances affect mating behavior in insects. Caffeine is a dopamine activator and thus enhances dopamine receptor activity. However, the effects of caffeine intake on insect mating behavior have been largely unexplored. Therefore, we examined the effect of caffeine on mating behavior in the red flour beetle Tribolium castaneum. Caffeine, which activates dopamine, affected the mating behavior of T. castaneum males. Males who orally ingested caffeine courted faster than males who did not, resulting in faster mounting of females and less time to a male's external aedeagus protrusion. However, the present results showed no difference in sperm precedence measured as a P2 value between males fed caffeine and males not fed caffeine. We discuss the effects of caffeine on insect mating and the possibility that caffeine consumption may cause males to mate with more females in the laboratory.  相似文献   
34.
Environmental Biology of Fishes - Eel movement patterns have been frequently studied to learn about their movements within the fresh- and brackish waters of the same river before their spawning...  相似文献   
35.
The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures.  相似文献   
36.
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.  相似文献   
37.
38.
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.  相似文献   
39.
40.
In this study, we studied the effects of cortisol and cortisone on the age-related decrease in locomotion in the nematode Caenorhabditis elegans and on the tolerance to heat stress at 35 °C and to oxidative stress induced by the exposure to 0.1% H2O2. Changes in mRNA expression levels of C. elegans genes related to stress tolerance were also analyzed. Cortisol treatment restored nematode movement following heat stress and increased viability under oxidative stress, but also shortened worm lifespan. Cortisone, a cortisol precursor, also restored movement after heat stress. Additionally, cortisol treatment increased mRNA expression of the hsp-12.6 and sod-3 genes. Furthermore, cortisol treatment failed to restore movement of daf-16-deficient mutants after heat stress, whereas cortisone failed to restore the movement of dhs-30-deficient mutants after heat stress. In conclusion, the results suggested that cortisol promoted stress tolerance via DAF-16 but shortened the lifespan, whereas cortisone promoted stress tolerance via DHS-30.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号