首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1676篇
  免费   124篇
  国内免费   151篇
  2024年   3篇
  2023年   25篇
  2022年   39篇
  2021年   105篇
  2020年   77篇
  2019年   100篇
  2018年   85篇
  2017年   58篇
  2016年   86篇
  2015年   102篇
  2014年   118篇
  2013年   132篇
  2012年   135篇
  2011年   120篇
  2010年   78篇
  2009年   77篇
  2008年   88篇
  2007年   59篇
  2006年   59篇
  2005年   48篇
  2004年   48篇
  2003年   39篇
  2002年   37篇
  2001年   31篇
  2000年   34篇
  1999年   36篇
  1998年   13篇
  1997年   13篇
  1996年   15篇
  1995年   15篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有1951条查询结果,搜索用时 109 毫秒
101.
102.
Bocaviruses are associated with many human infectious diseases, such as respiratory tract infections, gastroenteritis, and hepatitis. Rats are known to be reservoirs of bocaviruses, including rodent bocavirus and rat bocavirus. Recently, ungulate bocaparvovirus 4, a known porcine bocavirus, has also been found in rats. Thus, investigating bocaviruses in rats is important for determining the origin of the viruses and preventing and controlling their transmission. To the best of our knowledge, no study to date has investigated bocaviruses in the livers of rats. In this report, a total of 624 rats were trapped in southern China between 2014 and 2017. Liver and serum samples from rats were tested for the prevalence of bocaviruses using PCR. Sequences related to ungulate bocaparvovirus 4 and rodent bocavirus were detected in both liver and serum samples. Interestingly, the prevalence of ungulate bocaparvovirus 4 (reference strain:KJ622366.1) was higher than that of rodent bocavirus (reference strain:KY927868.1) in both liver (2.24% and 0.64%, respectively) and serum samples (2.19% and 0.44%, respectively). The NS1 regions of ungulate bocaparvovirus 4 and rodent bocavirus related sequences displayed over 84% and 88% identity at the nucleic acid and amino acid levels, respectively. Furthermore, these sequences had similar genomic structure, genomic features, and codon usage bias, and shared a common ancestor. These viruses also displayed greater adaptability to rats than pigs. Our results suggested that ungulate bocaparvovirus 4 and rodent bocavirus may originate from rats and may be different genotypes of the same bocavirus species.  相似文献   
103.
Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).  相似文献   
104.
Mammalian erythrocytes are highly specialized cells that have adapted to lose their nuclei and cellular components during maturation to ensure oxygen delivery. Nuclear extrusion, the most critical event during erythropoiesis, represents an extreme case of asymmetric partitioning that requires a dramatic reorganization of the cytoskeleton. However, the precise role of the microtubule cytoskeleton in the enucleation process remains controversial. In this study, we show that microtubule reorganization is critical for microtubule clearance and nuclear extrusion during erythropoiesis. Using a rodent anemia model, we found that microtubules were present in erythroblasts and reticulocytes but were undetectable in erythrocytes. Further analysis demonstrated that microtubules became disordered in reticulocytes and revealed that microtubule stabilization was critical for tubulin degradation. Disruption of microtubule dynamics using the microtubule-stabilizing agent paclitaxel or the microtubule-destabilizing agent nocodazole did not affect the efficiency of erythroblast enucleation. However, paclitaxel treatment resulted in the retention of tubulin in mature erythrocytes, and nocodazole treatment led to a defect in pyrenocyte morphology. Taken together, our data reveals a critical role for microtubules in erythrocyte development. Our findings also implicate the disruption of microtubule dynamics in the pathogenesis of anemia-associated diseases, providing new insight into the pathogenesis of the microtubule-targeted agent-associated anemia frequently observed during cancer chemotherapy.  相似文献   
105.
The purpose of this study is to better understand the role of interleukin 35 (IL35) in esophageal carcinoma by comparing the mRNA level in Barrett's esophageal mucosa and in matched normal squamous mucosa and to understand how the diagnosis model works with two other genes: hepatocyte nuclear factor 1B (HNF1B) and cAMP responsive element binding protein 3-like 1 (CREB3L1). By comparing carcinoma tissue and normal tissue samples, we extracted all the differentially expressed mRNAs. The bioinformatics analysis resulted in the discovery of three prominent genes. Eventually, the three genes were utilized to train a deep-learning model. An additional wet experiment was conducted to validate the effect of IL35. All the differentially expressed genes were enriched into nine groups, each of which has specific biological functions. Given that the three significant genes HNF1B, CREB3L1, and IL35 as diagnostic features, a deep-learning model was constructed, reaching an accuracy of 93% in the training set and 87% in the test set. Our findings suggest that IL35, along with the other two signatures, can distinguish esophageal tumor samples from normal samples precisely.  相似文献   
106.
Plants experiencing salt‐induced stress often reduce cytokinin levels during the early phases of stress‐response. Interestingly, we found that the cytokinin content in the apple rootstock “robusta” was maintained at a high level under salt stress. Through screening genes involved in cytokinin biosynthesis and catabolism, we found that the high expression levels of IPT5b in robusta roots were involved in maintaining the high cytokinin content. We identified a 42 bp deletion in the promoter region of IPT5b, which elevated IPT5b expression levels, and this deletion was linked to salt tolerance in robusta×M.9 segregating population. The 42 bp deletion resulted in the deletion of a Proline Response Element (ProRE), and our results suggest that ProRE negatively regulates IPT5b expression in response to proline. Under salt stress, the robusta cultivar maintains high cytokinin levels as IPT5b expression cannot be inhibited by proline due to the deletion of ProRE, leading to improve salt tolerance.  相似文献   
107.
Kazakh sheep are seasonal estrous animals, and gonadotropin-releasing hormone (GnRH) is the key to fertility regulation. The nutritional level has a certain regulatory effect on estrous, and vitamin B folate plays a role in DNA methylation, directly participating in the process. The goal of this study was to determine whether folate is involved in GnAQ methylation and its effect on GnRH secretion. The hypothalamic neurons of Kazakh fetal sheep were treated with folate at concentrations of 0 mg/mL, 4 mg/mL, 40 mg/mL, and 80 mg/mL. GnAQ promoter methylation, DNMT1, GnAQ expression, and GnRH secretion following treatment with different concentrations of folate were analyzed. One CpG site was methylated in the GNAQ promoter with 40 mg/mL folic acid, and no CpG methylation was found in the other groups. GnAQ expression was related to folate concentration and showed a trend of increasing first and then decreasing. The GnRH expression level in the 40 mg/mL folate group was significantly higher than in the other three groups ( P < .05). These results demonstrate that the appropriate folate concentration promoted GANQ promoter methylation, which in turn affected GnRH secretion.  相似文献   
108.
To determine whether selective impairment of cardiac sarcoplasmic reticulum (SR) Ca(2+) transport may drive the progressive functional deterioration leading to heart failure, transgenic mice, overexpressing a phospholamban Val(49) --> Gly mutant (2-fold), which is a superinhibitor of SR Ca(2+)-ATPase affinity for Ca(2+), were generated, and their cardiac phenotype was examined longitudinally. At 3 months of age, the increased EC(50) level of SR Ca(2+) uptake for Ca(2+) (0.67 +/- 0.09 microm) resulted in significantly higher depression of cardiomyocyte rates of shortening (57%), relengthening (31%), and prolongation of the Ca(2+) signal decay time (165%) than overexpression (2-fold) of wild type phospholamban (68%, 64%, and 125%, respectively), compared with controls (100%). Echocardiography also revealed significantly depressed function and impaired beta-adrenergic responses in mutant hearts. The depressed contractile parameters were associated with left ventricular remodeling, recapitulation of fetal gene expression, and hypertrophy, which progressed to dilated cardiomyopathy with interstitial tissue fibrosis and death by 6 months in males. Females also had ventricular hypertrophy at 3 months but exhibited normal systolic function up to 12 months of age. These results suggest a causal relationship between defective SR Ca(2+) cycling and cardiac remodeling leading to heart failure, with a gender-dependent influence on the time course of these alterations.  相似文献   
109.
We examined expression of retinal dehydrogenase (RALDH) types 1 and 2 in liver and lung, and the effect of vitamin A status on testis expression by in situ hybridization. Liver expressed RALDH1 and RALDH2 only in stellate cells and hepatocytes, respectively. Lung expressed RALDH1 and RALDH2 throughout the epithelia of the airways, from the principal bronchi to the respiratory bronchiole. Vitamin A-sufficient rats expressed RALDH1 in spermatocytes, with less intense expression in spermatogonia and spermatids, and expressed RALDH2 in interstitial cells, spermatogonia, and spermatocytes. Neither Sertoli nor peritubular cells showed detectable RALDH1 or RALDH2 mRNA. Vitamin A deficiency produced a sevenfold increase in RALDH1 and a 70-fold decrease in RALDH2 mRNA in testis. In each case, the net change reflected extensive loss of germ cells, increased intensity of expression in residual germ cells, and expression in Sertoli and peritubular cells. Low-dose RA relatively early during vitamin A depletion supported spermatogenesis and affected expression of both RALDHs, but did not reinstate "vitamin A normal" expression patterns. These results show that: RALDH1 and RALDH2 have distinct mRNA expression patterns in multiple cell types in three vitamin A target tissues; RALDH expression occurs in cell types that express cellular retinol-binding protein and retinol dehydrogenase isozymes (except stellate cells, for which retinol dehydrogenase expression remains unknown); vitamin A deficiency and RA supplementation affects the loci and intensity of RALDH mRNAs in testis; and low-dose RA does not substitute completely for retinol. Overall, these data provide insight into the unique functions of RALDH1 and RALDH2 in retinoid metabolism.  相似文献   
110.
In humans, the Fc receptor for IgG, FcgammaRIIA, is expressed on macrophages and platelets and may play an important role in the pathophysiology of immune-mediated thrombocytopenia. Mice lack the genetic equivalent of human FcgammaRIIA. To better understand the role of FcgammaRIIA in vivo, FcgammaRIIA transgenic mice were generated and characterized. One transgenic mouse line expressed FcgammaRIIA on platelets and macrophages at levels equivalent to human cells, and cross-linking FcgammaRIIA on these platelets induced platelet aggregation. Immune-mediated thrombocytopenia in this transgenic line was studied using i.v. and i.p. administration of anti-mouse platelet Ab. In comparison with matched wild-type littermates that are negative for the FcgammaRIIA transgene, Ab-mediated thrombocytopenia was significantly more severe in the FcgammaRIIA transgenic mice. In contrast, FcR gamma-chain knockout mice that lack functional expression of the Fc receptors FcgammaRI and FcgammaRIII on splenic macrophages did not demonstrate Ab-mediated thrombocytopenia. We generated FcgammaRIIA transgenic x FcR gamma-chain knockout mice to examine the role of FcgammaRIIA in immune clearance in the absence of functional FcgammaRI and FcgammaRIII. In FcgammaRIIA transgenic x FcR gamma-chain knockout mice, severe immune thrombocytopenia mediated by FcgammaRIIA was observed. These results demonstrate that FcgammaRIIA does not require the FcR gamma-chain for expression or function in vivo. Furthermore, taken together, the data suggest that the human Fc receptor FcgammaRIIA plays a significant role in the immune clearance of platelets in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号