首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1281篇
  免费   52篇
  2022年   6篇
  2021年   22篇
  2020年   15篇
  2019年   23篇
  2018年   26篇
  2017年   25篇
  2016年   29篇
  2015年   48篇
  2014年   58篇
  2013年   99篇
  2012年   103篇
  2011年   87篇
  2010年   52篇
  2009年   60篇
  2008年   80篇
  2007年   66篇
  2006年   73篇
  2005年   68篇
  2004年   63篇
  2003年   64篇
  2002年   49篇
  2001年   13篇
  2000年   13篇
  1999年   13篇
  1998年   11篇
  1997年   15篇
  1996年   12篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   13篇
  1991年   15篇
  1990年   8篇
  1989年   8篇
  1988年   8篇
  1987年   8篇
  1986年   3篇
  1984年   4篇
  1983年   4篇
  1982年   7篇
  1981年   8篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1973年   2篇
  1971年   3篇
  1968年   4篇
  1965年   2篇
  1964年   2篇
  1961年   1篇
排序方式: 共有1333条查询结果,搜索用时 609 毫秒
71.
72.
2',3'-Dihydrophylloquinone (dihydro-K1) is a hydrogenated form of vitamin K1 (K1), which is produced during the hydrogenation of K1-rich plant oils. In this study, we found that dihydro-K1 counteracts the sodium warfarin-induced prolonged blood coagulation in rats. This indicates that dihydro-K1 functions as a cofactor in the posttranslational gamma-carboxylation of the vitamin K-dependent coagulation factors. It was also found that dihydro-K1 as well as K1 inhibits the decreasing effects of warfarin on the serum total osteocalcin level. In rats, dihydro-K1 is well absorbed and detected in the tissues of the brain, pancreas, kidney, testis, abdominal aorta, liver and femur. K1 is converted to menaquinone-4 (MK-4) in all the above-mentioned tissues, but dihydro-K1 is not. The unique characteristic of dihydro-K1 possessing vitamin K activity and not being converted to MK-4 would be useful in revealing the as yet undetermined physiological function of the conversion of K1 to MK-4.  相似文献   
73.
A recombinant adenovirus vector containing the human thioredoxin (TRX) gene was constructed using the Cre-loxP recombination system and used to transfect rat hepatocytes with very high efficiency. The TRX gene was expressed in a dose-dependent manner and significantly modulated rat cellular functions. The TRX gene conferred resistance to oxidative stress, such as hydrogen peroxide treatment, on the host hepatocytes. FACS analysis of DNA fragmentation showed that the TRX gene suppressed hepatocyte apoptosis. It also significantly extended the life span of hepatocytes cultured conventionally on polystyrene plates. Liver-specific functions were maintained in the viability-modulated hepatocytes. Moreover, TRX expression did not affect hepatocyte spheroid formation and it extensively suppressed necrosis in the internal cells. Thus, the transfection of hepatocytes with the TRX gene successfully confers global maintenance of liver functions. These findings provide important information for the development of bioartificial liver support systems and gene therapy for liver diseases.  相似文献   
74.
Growth of and hydrogen production by wild-type (WT) Rhodovulum sulfidophilum were compared with those by one of its mutants lacking the poly(3-hydroxybutyrate) (PHB) biosynthesis ability (PNM2). During phototrophic growth under aerobic conditions with fixed illumination, changes in the extinction coefficient and PHB content of WT and PNM2 cells revealed interference of light penetration by PHB. WT cells synthesized PHB at an early stage of the cultivation. PHB degradation after exhaustion of acetate during the cultivation of WT resulted in a decrease of the extinction coefficient. The hydrogen production rate under anaerobic conditions with fixed illumination was examined in WT and PNM2 cell suspensions at different densities. The hydrogen production rate was determined not by the light penetration but by the kinds of hydrogen donors and the density of suspension. The highest value of the rate of hydrogen production from PHB, 33.0 ml/l/h, was improved compared with 26.6 ml/l/h, which was the highest value in hydrogen production from succinate. Under the same illumination, conversion to hydrogen from PHB is more efficient than that from succinate, which is one of the best substrates for hydrogen production. These results suggest that the hydrogen production rate can be maximized in the hydrogen production system based on PHB degradation, which is achieved in high-density suspension under external-substrate-depleted conditions after aerobic cultivation in the presence of an excess amount of acetate.  相似文献   
75.
Lactosucrose synthesis from sucrose and lactose was carried out by using beta-fructofuranosidase from Arthrobacter sp. K-1. The transfructosylation mechanism was found to be of an ordered bi-bi type in which sucrose was bound first to the enzyme and lactosucrose was released last. Hydrolysis side-reaction experiments indicated that the reactions were uncompetitively inhibited by glucose and lactose, while no inhibition by fructose was apparent. The overall reaction rates were formulated. The reaction rate constants, equilibrium constant, and dissociation and Michaelis constants were determined at 35 degrees C and 50 degrees C by fitting the experimental concentration changes with the calculated values by a nonlinear least-square method. The average relative derivation for the concentrations was 9.67%. The kinetic parameters were also calculated for 43 degrees C and 60 degrees C by assuming the Arrhenius law, and the course of reaction was predicted. The obtained reaction rate equations well represented the concentration changes during the experiment at all temperatures.  相似文献   
76.
We isolated and analysed two genomic DNAs that encode the heat-shock protein Hsp30 from Coriolus versicolor. The amino acid sequences substitute only three amino acid substitutions. The promoter regions contain the consensus heat-shock element, a xenobiotic-response element, a stress-response element, and a metal-response element. The levels of mRNAs for Hsp30 increased markedly after exposure of C. versicolor to pentachlorophenol and levels were higher than those after heat shock.  相似文献   
77.
Chitinase C (ChiC) is the first bacterial family 19 chitinase discovered in Streptomyces griseus HUT6037. While it shares significant similarity with the plant family 19 chitinases in the catalytic domain, its N-terminal chitin-binding domain (ChBD(ChiC)) differs from those of the plant enzymes. ChBD(ChiC) and the catalytic domain (CatD(ChiC)), as well as intact ChiC, were separately produced in E. coli and purified to homogeneity. Binding experiments and isothermal titration calorimetry assays demonstrated that ChBD(ChiC) binds to insoluble chitin, soluble chitin, cellulose, and N-acetylchitohexaose (roughly in that order). A deletion of ChBD(ChiC) resulted in moderate (about 50%) reduction of the hydrolyzing activity toward insoluble chitin substrates, but most (about 90%) of the antifungal activity against Trichoderma reesei was abolished by this deletion. Thus, this domain appears to contribute more importantly to antifungal properties than to catalytic activities. ChBD(ChiC) itself did not have antifungal activity or a synergistic effect on the antifungal activity of CatD(ChiC) in trans.  相似文献   
78.
We recently established a cell line (designated 371M) derived from an ovarian mucinous cystadenocarcinoma. The tumor cells were obtained from the ascitic fluid of a 54-year-old Japanese woman while she was undergoing surgery. Adjuvant chemotherapy (combined paclitaxel and carboplatin) was administered, but was ineffective, and she died about 4 months after surgery. The 371M cells continuously propagated in vitro over a period of about 50 months and, to date, have undergone over 100 passages. They proliferated in a monolayered sheet with doubling times of 84 h and 37 h in the 10th and 34th passages, respectively. When transplanted into nude mice, the tumor histopathologically resembled the structure of the original tumor. The 371M cells secreted high levels of CA125 and CA19-9 into the culture medium. There were several abnormal chromosomes in all karyotypes selected at random. Sensitivity of 371M cells to a variety of anti-cancer drugs was examined by in vitro MTT assay, and the results suggested that CPT-11 and CDDP were more effective against 371M cells than other anti-cancer agents.  相似文献   
79.
BACKGROUND: Beraprost sodium, a prostaglandin I2 analogue, has been recently reported to exhibit beneficial effects on atherosclerosis in patients with diabetes. However, effects of beraprost sodium on microvascular injury in diabetes remain to be elucidated. We have previously shown that advanced glycation end products (AGE), senescent macroproteins formed at an accelerated rate in diabetes, caused pericyte apoptosis, thus being involved in the pathogenesis of the early phase of diabetic retinopathy. In this study, we examined whether beraprost sodium can protect against AGE-induced cytotoxicity in cultured retinal pericytes. MATERIALS AND METHODS: Intracellular formation of reactive oxygen species (ROS) was detected using a fluorescent probe. DNA synthesis was determined by measuring [3H]thymidine incorporation into cells. Apoptosis was determined by DNA fragmentations, which were quantitatively measured in an enzyme-linked immunosorbent assay. RESULTS: Beraprost sodium or forskolin, a stimulator of adenylate cyclase, was found to significantly inhibit AGE-induced ROS generation and the subsequent decrease in DNA synthesis in pericytes. Both treatments significantly prevented AGE-induced apoptotic cell death in pericytes. Furthermore, beraprost sodium was found to down-regulate AGE receptor mRNA levels in pericytes. CONCLUSION: The results demonstrated that cyclic AMP-elevating agents such as beraprost sodium and forskolin protected retinal pericytes from AGE-induced cytotoxicity through its anti-oxidative properties. Our present study suggests that beraprost sodium may have therapeutic potentials in treatment of patients with early diabetic retinopathy.  相似文献   
80.
Different enantiomeric isomers, sn-glycerol-1-phosphate and sn-glycerol-3-phosphate, are used as the glycerophosphate backbones of phospholipids in the cellular membranes of Archaea and the remaining two kingdoms, respectively. In Archaea, sn-glycerol-1-phosphate dehydrogenase is involved in the generation of sn-glycerol-1-phosphate, while sn-glycerol-3-phosphate dehydrogenase synthesizes the enantiomer in Eukarya and Bacteria. The coordinates of sn-glycerol-3-phosphate dehydrogenase are available, although neither the tertiary structure nor the reaction mechanism of sn-glycerol-1-phosphate dehydrogenase is known. Database searching revealed that the archaeal enzyme shows sequence similarity to glycerol dehydrogenase, dehydroquinate synthase and alcohol dehydrogenase IV. The glycerol dehydrogenase, with coordinates that are available today, is closely related to the archaeal enzyme. Using the structure of glycerol dehydrogenase as the template, we built a model structure of the Methanothermobacter thermautotrophicus sn-glycerol-1-phosphate dehydrogenase, which could explain the chirality of the product. Based on the model structure, we determined the following: (1) the enzyme requires a Zn(2+) ion for its activity; (2) the enzyme selectively uses the pro-R hydrogen of the NAD(P)H; (3) the putative active site and the reaction mechanism were predicted; and (4) the archaeal enzyme does not share its evolutionary origin with sn-glycerol-3-phosphate dehydrogenase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号