首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57702篇
  免费   4670篇
  国内免费   4604篇
  2024年   36篇
  2023年   719篇
  2022年   879篇
  2021年   3041篇
  2020年   2129篇
  2019年   2571篇
  2018年   2390篇
  2017年   1835篇
  2016年   2596篇
  2015年   3713篇
  2014年   4463篇
  2013年   4555篇
  2012年   5397篇
  2011年   4881篇
  2010年   2927篇
  2009年   2661篇
  2008年   2998篇
  2007年   2680篇
  2006年   2312篇
  2005年   1921篇
  2004年   1540篇
  2003年   1443篇
  2002年   1091篇
  2001年   917篇
  2000年   896篇
  1999年   812篇
  1998年   505篇
  1997年   459篇
  1996年   463篇
  1995年   431篇
  1994年   416篇
  1993年   330篇
  1992年   449篇
  1991年   327篇
  1990年   287篇
  1989年   261篇
  1988年   210篇
  1987年   196篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
951.
Gamma‐aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to Pseudomonas syringae in Arabidopsis thaliana. While searching for the mechanism underlying the pathogen‐responsive mitogen‐activated protein kinase (MPK)3/MPK6 signaling cascade in plant immunity, we found that activation of MPK3/MPK6 greatly induced GABA biosynthesis, which is dependent on the glutamate decarboxylase genes GAD1 and GAD4. Inoculation with Pseudomonas syringae pv tomato DC3000 (Pst) and Pst‐avrRpt2 expressing the avrRpt2 effector gene induced GAD1 and GAD4 gene expression and increased the levels of GABA. Genetic evidence revealed that GAD1, GAD2, and GAD4 play important roles in both GABA biosynthesis and plant resistance in response to Pst‐avrRpt2 infection. The gad1/2/4 triple and gad1/2/4/5 quadruple mutants, in which the GABA levels were extremely low, were more susceptible to both Pst and Pst‐avrRpt2. Functional loss of MPK3/MPK6, or their upstream MKK4/MKK5, or their downstream substrate WRKY33 suppressed the induction of GAD1 and GAD4 expression after Pst‐avrRpt2 treatment. Our findings shed light on both the regulation and role of GABA in the plant immunity to a bacterial pathogen.  相似文献   
952.
外生菌根是木本植物根系与真菌形成的共生结构,外生菌根真菌在红松等外生菌根树种的定植与森林生态系统的保持方面起到至关重要的作用。明确菌根系统内外生菌根真菌群落组成是揭示菌根共生机制的前提条件。本研究利用Illumina Hiseq测序平台对生长季内红松纯林内根围土壤及菌根样品ITS2区进行高通量测序,分析其外生菌根真菌群落结构随季节的变化规律,同时通过统计学的方法分析了红松根系微生态中外生菌根真菌群落结构组成变化与其他生物因素、非生物因素的相关性。结果如下:(1)从6月份到10月份,5个月的菌根样品测序共得到741个真菌OTUs,利用FUNGuild数据库分析,其中85个OTUs归类为外生菌根真菌,优势属(相对丰度>5)为蜡壳菌属Sebacina、乳牛肝菌属SuillusMeliniomyces、红菇属Russula、棉革菌属Tomentella、须腹菌属Rhizopogon和缘腺革菌属Amphinema。6月份菌根中外生菌根真菌的多样性最大,显著高于其他月份。(2)红松林外生菌根真菌群落组成受到土壤pH、有效磷含量、有效钾含量和土壤有效氮含量的影响,它们与外生菌根真菌优势属相对丰度呈现正相关或负相关。(3)根围土壤内真菌是影响红松根系外生菌根真菌相对丰度的另一重要因素,其中,包括普可尼亚属Pochonia、产丝齿菌属Hyphodontia、镰刀菌属FusariumCollembolispora、枝穗霉属ClonostachysApodus、鹅膏属Amanita在内的土壤真菌与根内外生菌根真菌的相对丰度呈线性关系。同时,超过85%的根内外生菌根真菌与同一取样地的土壤共有,可以认为侵染和扩散是红松根内外生菌根真菌群落形成的主要方式,同时兼有植物根系的选择,因为根内并不包括所有土壤中存在的外生菌根真菌,其机制需要进一步人工模拟试验验证。  相似文献   
953.
954.
Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar‐free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three‐dimensional network. CTs might play a role in the regeneration of injured myocardium.  相似文献   
955.
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with an estimated 1.8 million new cases worldwide and associated with high mortality rates of 881 000 CRC‐related deaths in 2018. Screening programs and new therapies have only marginally improved the survival of CRC patients. Immune‐related genes (IRGs) have attracted attention in recent years as therapeutic targets. The aim of this study was to identify an immune‐related prognostic signature for CRC. To this end, we combined gene expression and clinical data from the CRC data sets of The Cancer Genome Atlas (TCGA) into an integrated immune landscape profile. We identified a total of 476 IRGs that were differentially expressed in CRC vs normal tissues, of which 18 were survival related according to univariate Cox analysis. Stepwise multivariate Cox proportional hazards analysis established an immune‐related prognostic signature consisting of SLC10A2, FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC. The predictive ability of this signature for 3‐ and 5‐year overall survival was determined using receiver operating characteristics (ROC), and the respective areas under the curve (AUC) were 79.2% and 76.6%. The signature showed moderate predictive accuracy in the validation and GSE38832 data sets as well. Furthermore, the 8‐IRG signature correlated significantly with tumour stage, invasion, lymph node metastasis and distant metastasis by univariate Cox analysis, and was established an independent prognostic factor by multivariate Cox regression analysis for CRC. Gene set enrichment analysis (GSEA) revealed a relationship between the IRG prognostic signature and various biological pathways. Focal adhesions and ECM‐receptor interactions were positively correlated with the risk scores, while cytosolic DNA sensing and metabolism‐related pathways were negatively correlated. Finally, the bioinformatics results were validated by real‐time RT?qPCR. In conclusion, we identified and validated a novel, immune‐related prognostic signature for patients with CRC, and this signature reflects the dysregulated tumour immune microenvironment and has a potential for better CRC patient management.  相似文献   
956.
957.
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+, CD8+ T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3+ T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.  相似文献   
958.
The circular RNA, CDR1as/ciRS‐7, functions as a vital regulator in various cancers; however, the predictive value of CDR1as remains controversial. Therefore, a comprehensive analysis for clarifying the precise diagnostic and prognostic value of CDR1as in solid tumours is needed. A literature review of several databases was conducted for identifying potential studies. Pooled odds ratios (ORs) and hazard ratios (HRs) were used for evaluating the diagnostic accuracy variables and survival. Overall, 15 studies (1787 patients) and 11 studies (1578 patients) were included for diagnostic and prognostic outcome syntheses, respectively. Up‐regulated CDR1as expression was found to be correlated with worse clinicopathological characteristics, including the T status, N status, histological grade, TNM stage and distant metastasis. The synthesized sensitivity was 0.72 (95% confidence interval [CI], 0.65‐0.79), and the specificity was 0.80 (95% CI, 0.74‐0.86). The positive likelihood ratio (LR), negative LR and diagnostic odds ratio (DOR) were 3.70, 0.34 and 10.80, respectively. The area under the receiver operator characteristic curve was 0.84 (95% CI, 0.80‐0.87). In the pooled prognostic analysis, patients with high CDR1as expression had worse overall survival (HR = 2.40, P < 0.001) and disease‐free survival (HR = 1.74, P < 0.001). These results suggest that CDR1as is a reliable diagnostic and prognostic biomarker with high accuracy and efficiency, which may potentially facilitate clinical decisions on solid tumours in the future.  相似文献   
959.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
960.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号