首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   10篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2005年   1篇
  2004年   6篇
  2003年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   7篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有122条查询结果,搜索用时 31 毫秒
61.

Introduction  

The C allele of the nonsynonymous Arg265His (rs3733591) variant of SLC2A9 confers risk for gout in Han Chinese, Solomon Island and Japanese samples, with a stronger role in tophaceous gout. There is no evidence for an association with gout in Caucasian populations. In the present study, we tested rs3733591 for association with gout in New Zealand (NZ) Māori, Pacific Island and Caucasian samples.  相似文献   
62.
Although regions of DNA reacting with anti-Z-DNA antibodies have been identified in the polytene chromosomes of Drosophila spp. and the metaphase chromosomes from a number of different mammalian species, the biological role of this DNA is unknown. Flow cytometry was used in the present studies to quantitate the binding of anti-Z-DNA antibodies in quiescent and activated human peripheral blood lymphocytes; the antibody binding was then correlated with cell cycle phase. The data show that quiescent (G0 or G1Q) lymphocytes are heterogeneous with respect to their reaction with anti-Z-DNA antibodies. The transition from quiescence (G1Q) into the cell cycle (G1), which involves decondensation of chromatin, did not result in any significant change in binding of these antibodies. In contrast, progression of cells from G1 through S and G2 is correlated with a 27% decrease in anti-Z-DNA antibody reactivity relative to total DNA content. No significant change was observed during the transition from G2 to mitosis (M).  相似文献   
63.
Selenium is an essential component of glutathione peroxidase, an enzyme which protects cells against peroxidation and controls concentrations of intracellular peroxides. Since selenium deficiency is clinically associated with an increased degree of atherosclerosis, the effects of selenium deficiency on prostacyclin (PGI2) and platelet activating factor (PAF) production by cultured human umbilical vein endothelial cells (HUVEC) were investigated. In selenium-deficient HUVEC, histamine-induced PGI2 synthesis was significantly decreased when compared to selenium-supplemented HUVEC; in contrast, histamine-induced PAF production was increased by selenium deficiency. Histamine-induced inositol trisphosphate and [Ca2+]i responses and the conversion of PGG2 and PGH2 to PGI2 were not altered by selenium deficiency. However, selenium deficiency decreased the conversion of exogenous arachidonate to PGI2 and markedly suppressed glutathione peroxidase activity. These results suggest that selenium deficiency, by decreasing glutathione peroxidase activity, makes HUVEC susceptible to peroxide-induced inhibition of the cyclooxygenase activity of PGH2 synthase, resulting in decreased PGI2 production. These changes may alter platelet function in vivo and thus play a role in the increased incidence of atherosclerosis reported in selenium-deficient individuals.  相似文献   
64.
65.
The annexin A2 (A2) heterotetramer, consisting of two copies of A2 and two copies of S100A10/p11, promotes fibrinolytic activity on the surface of vascular endothelial cells by assembling plasminogen and tissue plasminogen activator (tPA) and accelerating the generation of plasmin. In humans, overexpression of A2 by acute promyelocytic leukemia cells is associated with excessive fibrinolysis and hemorrhage, whereas anti-A2 autoantibodies appear to accentuate the risk of thrombosis in patients with anti-phospholipid syndrome. Complete deficiency of A2 in mice leads to a lack of tPA cofactor activity, accumulation of intravascular fibrin, and failure to clear arterial thrombi. Within the endothelial cell, p11 is required for Src kinase-mediated tyrosine phosphorylation of A2, which signals translocation of both proteins to the cell surface. Here we show that p11 is expressed at very low levels in the absence of A2 both in vitro and in vivo. We demonstrate further that unpartnered p11 becomes polyubiquitinated and degraded via a proteasome-dependent mechanism. A2 stabilizes intracellular p11 through direct binding, thus masking an autonomous p11 polyubiquitination signal that triggers proteasomal degradation. This interaction requires both the p11-binding N-terminal domain of A2 and the C-terminal domain of p11. This mechanism prevents accumulation of free p11 in the endothelial cell and suggests that regulation of tPA-dependent cell surface fibrinolytic activity is precisely tuned to the intracellular level of p11.  相似文献   
66.
Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) encodes a chemokine-like G protein-coupled receptor (KSHV-GPCR) that is implicated in the pathogenesis of Kaposi's sarcoma (KS). Since endothelial cells appear to be targets for the virus, we developed an in vitro mouse lung endothelial cell model in which KSHV-GPCR is stably expressed and KSHV-GPCR signaling was studied. In mouse lung endothelial cells: 1) KSHV-GPCR does not exhibit basal signaling through the phosphoinositide-specific phospholipase C pathway but inositol phosphate production is stimulated by growth-related oncogene alpha (Gro-alpha) via a pertussis toxin (PTX)-insensitive pathway; 2) KSHV-GPCR signals basally through a PTX-sensitive pathway leading to a lowering of intracellular cAMP level that can be lowered further by Gro alpha and increased by interferon gamma-inducible protein 10; 3) KSHV-GPCR stimulates phosphatidylinositol 3-kinase via a PTX-insensitive mechanism; and 4) KSHV-GPCR activates nuclear factor-kappa B (NF-kappa B) by a PTX-sensitive G beta gamma subunit-mediated pathway. These data show that KSHV-GPCR couples to at least two G proteins and initiates signaling via at least three cascades in endothelial cells thereby increasing the complexity of regulation of endothelial cell function by KSHV-GPCR that may occur during viral infection.  相似文献   
67.
68.
Cholesteryl esters are the major lipids that accumulate in arteries during atherogenesis. The mechanisms responsible for this lipid accretion have not been completely defined. Our previous experiments have shown that prostacyclin (PGI2) enhances cholesteryl ester catabolism by increasing cyclic AMP in cultured arterial smooth muscle cells. However, PGI2 is rapidly degraded under physiologic conditions and endogenous levels of PGI2 in the human circulation are extremely low. These findings suggest that it is not a circulating hormone. We tested the hypothesis that stable PGI2 metabolites alter cholesteryl ester metabolism and cellular lipid accumulation. Ten to 100 nM dinor-6-keto PGF1 alpha, 13,14-dihydro-6,15-diketo PGF1 alpha, and 6,15-diketo PGF1 alpha increased cyclic AMP levels significantly two- to threefold with a concomitant enhancement of both lysosomal and cytoplasmic cholesteryl ester hydrolytic activities. Cholesteryl ester synthesis was unchanged by the PGI2 metabolites. When cyclic AMP concentrations were maintained at basal levels by an adenylate cyclase inhibitor, no effect on cholesteryl ester hydrolysis was observed following addition of PGI2 metabolites to the cells. Furthermore, addition of PGI2 metabolites during a 1-week culture period reduced free and esterified cholesterol by 50%. These data suggest that PGI2 metabolites: 1) decrease intracellular cholesterol accumulation by increasing cholesteryl ester catabolism; 2) act via enhancement of cyclic AMP; and, 3) may represent circulating regulators of arterial cholesteryl ester metabolism.  相似文献   
69.
Prostaglandin production by cultured human endothelial cells varies with growth conditions. We observed a marked diminution in both spontaneous and inducible production of prostacyclin (PGI2) by human umbilical vein and saphenous vein endothelial cells when they were cultured in the presence of the heparin-binding growth factor, acidic fibroblast growth factor (aFGF) and heparin, compared with PGI2 production during culture in medium lacking these factors. Decreased PGI2 production was related to duration of exposure of the cells to aFGF and heparin and depended on the concentration of both substances. Heparin (1-100 micrograms/ml) strongly potentiated the effects of aFGF but had a limited and variable effect alone. The decrease in PGI2 production correlated with a reduction in the cellular content of immunoreactive prostaglandin H synthase and prostacyclin synthase. Arachidonate deacylation was not decreased. In addition, the eicosanoid profile of endothelial cells was changed by exposure to aFGF and heparin. These studies indicate that heparin acts as a modulator of prostaglandin synthesis in endothelial cells through its interaction with aFGF, mediated by alterations in two key enzymes in the arachidonate metabolic pathway.  相似文献   
70.
In central nervous system (CNS)-directed gene therapy, efficient targeting of brain parenchyma through the vascular route is prevented by the endothelium and the epithelium of the blood-brain and the blood-cerebrospinal fluid barriers, respectively. In this study, we evaluated the feasibility of the combined genetic and chemical adenovirus capsid modification technology to enable transcellular delivery of targeted adenovirus (Ad) vectors across the blood-brain barrier (BBB) in vitro models. As a proof-of-principle ligand, maleimide-activated full-length human transferrin (hTf) was covalently attached to cysteine-modified Ad serotype 5 vectors either to its fiber or hexon protein. In transcytosis experiments, hTf-coupled vectors were shown to be redirected across the BBB models, the transcytosis activity of the vectors being dependent on the location of the capsid modification and the in vitro model used. The transduction efficiency of hTf-targeted vectors decreased significantly in confluent, polarized cells, indicating that the intracellular route of the vectors differed between unpolarized and polarized cells. After transcellular delivery the majority of the hTf-modified vectors remained intact and partly capable of gene transfer. Altogether, our results demonstrate that i) covalent attachment of a ligand to Ad capsid can mediate transcellular targeting across the cerebral endothelium in vitro, ii) the attachment site of the ligand influences its transcytosis efficiency and iii) combined genetic/chemical modification of Ad vector can be used as a versatile platform for the development of Ad vectors for transcellular targeting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号