首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5399篇
  免费   410篇
  国内免费   292篇
  2024年   7篇
  2023年   65篇
  2022年   95篇
  2021年   258篇
  2020年   189篇
  2019年   223篇
  2018年   207篇
  2017年   186篇
  2016年   286篇
  2015年   337篇
  2014年   372篇
  2013年   436篇
  2012年   498篇
  2011年   447篇
  2010年   265篇
  2009年   211篇
  2008年   294篇
  2007年   225篇
  2006年   201篇
  2005年   175篇
  2004年   183篇
  2003年   134篇
  2002年   145篇
  2001年   84篇
  2000年   51篇
  1999年   78篇
  1998年   51篇
  1997年   57篇
  1996年   41篇
  1995年   31篇
  1994年   38篇
  1993年   23篇
  1992年   34篇
  1991年   13篇
  1990年   12篇
  1989年   16篇
  1988年   15篇
  1987年   13篇
  1986年   10篇
  1985年   11篇
  1984年   12篇
  1983年   19篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1970年   3篇
排序方式: 共有6101条查询结果,搜索用时 531 毫秒
991.
为了研究胶质细胞源性神经营养因子(GDNF)在中枢神经系统疾病中的治疗应用,运用基因突变、蛋白质融合表达和蛋白质纯化技术获得分子质量较小的GDNF(△N39)活性片段.将HIV-1 Tat蛋白转导区(protein transduction domain,PTD)的9个碱性氨基酸49RKKRRQRRR57模拟物9个精氨酸(R9)与GDNF(△N39)活性片段融合表达,获得纯度达95%以上的GDNF(△N39)-R9融合蛋白.将GDNF、GDNF(△N39)、GDNF(△N39)-R9分别加入原代培养的中脑多巴胺能神经元和转染GDNF受体GFRαl和Ret的PC12细胞中,观察它们的神经营养活性和毒性.运用脑微血管内皮细胞株B-Endo 3,观察GDNF(△N39)-R9蛋白穿越血管内皮细胞膜的功能;运用脑血管内皮细胞和Matrigel铺板模拟血脑屏障,Transwell法检测Tat-GDNF(△N39)蛋白穿越脑血管内皮细胞和外周胶质膜的能力.结果显示:GDNF(△N39)-R9蛋白具有类似GDNF的神经营养活性,促进原代培养的中脑多巴胺能神经元和稳定表达GFRα1和Ret受体的PC12-GFRα1-Ret细胞株的存活,没有显示毒性,并且能很好地穿过脑微血管内皮细胞层和模拟的血脑屏障.  相似文献   
992.
目的:观察鲍肤索对血管性痴呆大鼠学习与记忆能力的干预及机制。方法:制备生物鲍肤索,分剂量喂饲血管性痴呆大鼠,测试学习与记忆能力、红细胞和血红蛋白。结果:鲍肤素提高大鼠Y型迷宫测试的分值和红细胞、血红蛋白水平。结论:鲍肤素能提高血管性痴呆大鼠的学习与记忆能力和红细胞、血红蛋白水平。  相似文献   
993.
The ratio of the levels of pro-survival and pro-apoptotic members of the Bcl-2 protein family is thought to be an important regulatory factor for determining the sensitivity of the mammalian cells to apoptotic stimuli. High levels of expression of pro-survival members such as Bcl(XL) in human cancers were frequently found to be a good prognostic indicator predicting poor response to chemotherapy. The pro-survival members of the Bcl-2 family mediate their effects through heterodimerization with the BH3 region of the pro-apoptotic members. Structural analyses of the binding complex of the BH3 peptide and Bcl(XL) showed that a hydrophobic groove termed the BH3 binding cleft is the docking site for the BH3 region. Chemical mimetics of the BH3 region such as BH3I-1 that target the BH3 binding cleft indeed exhibit pro-apoptotic activities. Chelerythrine (CHE) and sanguinarine (SAN) are natural benzophenanthridine alkaloids that are structurally homologous to each other. CHE was previously identified as an inhibitor of Bcl(XL) function from a high-throughput screen of natural products, but its mode of interaction with Bcl(XL) is not known. By determining the effect of site-directed mutagenesis on ligand binding and using saturation transfer difference (STD) NMR experiments, we have verified locations of these docked ligands. Surprisingly, CHE and SAN bind separately at the BH groove and BH1 region of Bcl(XL) respectively, different from the BH3 binding cleft where other known inhibitors of Bcl(XL) target. Interestingly, certain residues on the flexible loop between helices alpha1 and alpha2 of Bcl(XL) are also perturbed upon CHE, but not SAN or BH3I-1 binding. Although CHE and SAN are similarly effective as BH3I-1 in displacing bound BH3 peptide, they are much more effective in inducing apoptosis, raising the possibility that CHE and SAN might be able to antagonize other pro-survival mechanisms in addition to the one that involves BH3 region binding.  相似文献   
994.

Background

Lung cancer remains the leading cause of cancer-related deaths worldwide. The recurrence rate ranges from 35–50% among early stage non-small cell lung cancer patients. To date, there is no fully-validated and clinically applied prognostic gene signature for personalized treatment.

Methodology/Principal Findings

From genome-wide mRNA expression profiles generated on 256 lung adenocarcinoma patients, a 12-gene signature was identified using combinatorial gene selection methods, and a risk score algorithm was developed with Naïve Bayes. The 12-gene model generates significant patient stratification in the training cohort HLM & UM (n = 256; log-rank P = 6.96e-7) and two independent validation sets, MSK (n = 104; log-rank P = 9.88e-4) and DFCI (n = 82; log-rank P = 2.57e-4), using Kaplan-Meier analyses. This gene signature also stratifies stage I and IB lung adenocarcinoma patients into two distinct survival groups (log-rank P<0.04). The 12-gene risk score is more significant (hazard ratio = 4.19, 95% CI: [2.08, 8.46]) than other commonly used clinical factors except tumor stage (III vs. I) in multivariate Cox analyses. The 12-gene model is more accurate than previously published lung cancer gene signatures on the same datasets. Furthermore, this signature accurately predicts chemoresistance/chemosensitivity to Cisplatin, Carboplatin, Paclitaxel, Etoposide, Erlotinib, and Gefitinib in NCI-60 cancer cell lines (P<0.017). The identified 12 genes exhibit curated interactions with major lung cancer signaling hallmarks in functional pathway analysis. The expression patterns of the signature genes have been confirmed in RT-PCR analyses of independent tumor samples.

Conclusions/Significance

The results demonstrate the clinical utility of the identified gene signature in prognostic categorization. With this 12-gene risk score algorithm, early stage patients at high risk for tumor recurrence could be identified for adjuvant chemotherapy; whereas stage I and II patients at low risk could be spared the toxic side effects of chemotherapeutic drugs.  相似文献   
995.
We investigated the effects of the initial stiffness of a three-dimensional elastomer scaffold--highly porous poly(glycerol sebacate)--on functional assembly of cardiomyocytes cultured with perfusion for 8 days. The polymer elasticity varied with the extent of polymer cross-links, resulting in three different stiffness groups, with compressive modulus of 2.35 ± 0.03 (low), 5.28 ± 0.36 (medium), and 5.99 ± 0.40 (high) kPa. Laminin coating improved the efficiency of cell seeding (from 59 ± 15 to 90 ± 21%), resulting in markedly increased final cell density, construct contractility, and matrix deposition, likely because of enhanced cell interaction and spreading on scaffold surfaces. Compact tissue was formed in the low and medium stiffness groups, but not in the high stiffness group. In particular, the low stiffness group exhibited the greatest contraction amplitude in response to electric field pacing, and had the highest compressive modulus at the end of culture. A mathematical model was developed to establish a correlation between the contractile amplitude and the cell distribution within the scaffold. Taken together, our findings suggest that the contractile function of engineered cardiac constructs positively correlates with low compressive stiffness of the scaffold.  相似文献   
996.
Liu W X  Niu H B  Wan F H  Liu B 《农业工程》2010,30(4):196-200
The invasive plant Ageratina adenophora (Sprengel) changed soil microbial communities in the invaded area to facilitate its growth and inhibit native plants. However, little is known about the driving forces underlying the alteration of soil biota. Leachates from root and aerial part (stem and leaves) of A. adenophora were mixed into soil to imitate field invasion processes for evaluation of its impact on invasion of soil microbial community. The results indicated that soil microbial community was significantly changed when the soil taken from the newly-invaded area was treated with A. adenophora root and aerial part leachates for 3 and 5 weeks, respectively. The biota of newly invaded soil treated with concentration of 100 mg/mL A.adenophora leachates was much closer to that of heavily invaded soil, but was significantly different from that of control soil (newly invaded soil without treatment). A.adenophora leachates promoted growth of the seven dominant rhizosphere bacterial species in the invaded soil. The effect of A.adenophora leachates on soil biota and dominant rhizosphere bacteria was positively correlated with the concentration of leachates, however, the effect of root leachates was stronger than the aerial part leachates. It is assumed that A.adenophora change soil microbial community via nutritional and chemical communication, which helps it in better colonization of the invaded soil.  相似文献   
997.
Background: Studies investigating the association between genetic polymorphism of glutathione S-transferase T1 (GSTT1) and risk of colorectal cancer have reported conflicting results. In order to clarify the effect of GSTT1 polymorphism on the risk of developing colorectal cancer, we carried out a meta-analysis using published data to obtain more precise estimates of risk. Methods: Electronic searches of PubMed and EMBASE were conducted to select studies for this meta-analysis. Papers were included if they were observational studies investigating the association between GSTT1 polymorphism and colorectal cancer risk. The principal outcome measure was the odds ratio (OR) with 95% confidence interval (CI) for the risk of colorectal cancer associated with GSTT1 null genotype. Results: We identified 30 eligible studies, which included 7635 cases and 12,911 controls. The combined results based on all studies showed that there was a statistically significant link between GSTT1 null genotype and colorectal cancer risk (OR = 1.20, 95% CI = 1.03–1.40). In the analysis of ethnic groups, we observed distinct differences associated with GSTT1 null genotype, the pooled odds ratios for the GSTT1 polymorphism were 1.32 in Caucasians (95% CI = 1.09–1.58) and 1.03 in Asians (95% CI = 0.81–1.32). As far as concerned the interaction between GSTT1 genotype and colorectal cancer risk in relation to smoking history, there was no increase in risk for smokers or nonsmokers with the GSTT1 null genotype (smokers: OR = 1.13, 95% CI = 0.80–1.60, nonsmokers: OR = 0.99, 95% CI = 0.71–1.38). When stratifying by the location of colorectal cancer, we found that there was a statistically significant link in rectal cancer (OR = 1.50, 95% CI = 1.09–2.07), but not in colon cancer (OR = 1.33, 95% CI = 0.94–1.88). No associations could be detected between null GSTT1 polymorphism and age, sex, tumor stage and differentiation. Conclusion: Our current study demonstrates that GSTT1 null genotype is associated with an increased risk of colorectal cancer, specifically, among Caucasians.  相似文献   
998.
Du WW  Yang BB  Shatseva TA  Yang BL  Deng Z  Shan SW  Lee DY  Seth A  Yee AJ 《PloS one》2010,5(11):e13828
Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis.  相似文献   
999.

Background

The 3C-like protease (3CLpro) of severe acute respiratory syndrome-coronavirus is required for autoprocessing of the polyprotein, and is a potential target for treating coronaviral infection.

Methodology/Principal Findings

To obtain a thorough understanding of substrate specificity of the protease, a substrate library of 198 variants was created by performing saturation mutagenesis on the autocleavage sequence at P5 to P3'' positions. The substrate sequences were inserted between cyan and yellow fluorescent proteins so that the cleavage rates were monitored by in vitro fluorescence resonance energy transfer. The relative cleavage rate for different substrate sequences was correlated with various structural properties. P5 and P3 positions prefer residues with high β-sheet propensity; P4 prefers small hydrophobic residues; P2 prefers hydrophobic residues without β-branch. Gln is the best residue at P1 position, but observable cleavage can be detected with His and Met substitutions. P1'' position prefers small residues, while P2'' and P3'' positions have no strong preference on residue substitutions. Noteworthy, solvent exposed sites such as P5, P3 and P3'' positions favour positively charged residues over negatively charged one, suggesting that electrostatic interactions may play a role in catalysis. A super-active substrate, which combined the preferred residues at P5 to P1 positions, was found to have 2.8 fold higher activity than the wild-type sequence.

Conclusions/Significance

Our results demonstrated a strong structure-activity relationship between the 3CLpro and its substrate. The substrate specificity profiled in this study may provide insights into a rational design of peptidomimetic inhibitors.  相似文献   
1000.

Background

The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over.

Methodology/Principal Findings

Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level.

Conclusions

The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号