首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1279篇
  免费   77篇
  2023年   6篇
  2022年   8篇
  2021年   28篇
  2020年   15篇
  2019年   23篇
  2018年   36篇
  2017年   27篇
  2016年   51篇
  2015年   45篇
  2014年   58篇
  2013年   69篇
  2012年   112篇
  2011年   109篇
  2010年   70篇
  2009年   56篇
  2008年   89篇
  2007年   72篇
  2006年   92篇
  2005年   66篇
  2004年   47篇
  2003年   47篇
  2002年   38篇
  2001年   12篇
  2000年   7篇
  1999年   11篇
  1998年   11篇
  1997年   10篇
  1996年   10篇
  1995年   3篇
  1994年   11篇
  1993年   8篇
  1992年   9篇
  1991年   11篇
  1990年   4篇
  1989年   10篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1982年   3篇
  1979年   4篇
  1978年   5篇
  1975年   3篇
  1974年   7篇
  1967年   4篇
  1965年   4篇
  1963年   4篇
  1958年   5篇
  1957年   3篇
排序方式: 共有1356条查询结果,搜索用时 31 毫秒
31.
Until now, four species of eye trematodes have been found in South America. Of them, Philophthalmus lucipetus (synonymized with Philophthalmus gralli) displays a broad host spectrum, with at least 30 bird species (prevalently large water birds), five mammal species and humans serving as definitive hosts, and with snails Fagotia (Microcolpia) acicularis, Amphimelania holandri, Melanopsis praemorsa and Melanoides tuberculata serving as intermediate hosts. When examining a total of 50 birds of ten species in the wetland of Pantanos de Villa, Lima, Peru in July 2011, eye trematodes were identified visually in the edematous conjunctival sac of 11 (48%) out of 23 resident many-colored rush tyrants Tachuris rubrigastra. Based on morphometric characteristics, the trematodes were identified as P. lucipetus. ITS2 and CO1 gene of the examined specimens combined showed a 99% similarity to an Iranian isolate of Philophthalmus sp. from the intermediate host Melanoides tuberculata, an invasive freshwater snail, suggesting that these two isolates represent the same species with a wide geographical range. Moreover, the prevalence of infection with the philophthalmid cercariae was 31% in 744 Melanoides tuberculata examined in Pantanos de Villa in 2010. It is evident that P. lucipetus occurs throughout the world as well as locally, including Eurasia and South America. Here we report this trematode for the first time in Peru, and we were the first to sequence any of the South American eye trematodes. Low host specificity of P. lucipetus and the invasive character of Melanoides tuberculata as a competent intermediate host suggest that eye trematodosis caused by P. lucipetus may emerge frequently in various parts of the world, especially in the tropics. Increase of the zoonotic potential of the P. lucipetus associated with this invasive snail spreading across the world is predictable and should be of interest for further research.  相似文献   
32.
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.  相似文献   
33.
Dioecious alpine juniper has been influenced by human impacts, management and climate changes; hence, its present populations are remnant fragments of its former distribution in central Europe. Complex environmental shifts have had fatal consequences for growth, reproduction and health of juniper and hence for its population structure. We asked the questions: 1) what was the population size structure, the sex ratio and the health status of individuals? 2) How were the population parameters linked with the environmental conditions and surrounding vegetation? The study area was close and above the upper forest limit in central Europe, the Hrubý Jeseník Mts. The parameters of each juniper individual and its environmental conditions were obtained, Ellenberg's indicator values and habitat categories were also determined. Proportions of sex categories, shrub size and environmental conditions were investigated to assess relationships between the population categories and environmental factors. We revealed linkage among the shrub size, health vigor, vegetation cover, a habitat and environmental factors. While there was equal ratio of females and males (1:1), small individuals of undetermined sex predominated that reducing the effective population size. Juniper health vigor was associated with surrounding vegetation cover. Individuals of undetermined sex were smaller than those of remaining sex categories and prefer specific habitats at higher elevation, underlining the effect of abiotic conditions on sex performance and ratio. The observed pattern, which was attributed to shift in land-use practices in the middle of 20th century and climate changes, could be improved by management. We recommended experimental local grazing and mowing accompanying by profound and continuing assessment of interaction among environmental factors and juniper performance.  相似文献   
34.
Whole-body cryotherapy (WBC) involves exposing minimally dressed participants to very cold air (injecting liquid nitrogen with temperature −195 °C), either in a specially designed chamber (cryo-chamber) or cabin (cryo-cabin), for a short period of time. The aim of this study was to examine the actual temperature of the air in the cryo-cabin at different locations throughout the cabin by using human subjects and a manikin. Additionally, we monitored skin temperature before and for 60 min after the cryo-cabin session. Twelve subjects completed one 3 min cryo-cabin session. Temperature next to the skin was assessed during the session, while the skin temperature was monitored before, 3 min after and every 10 min for 60 min after completing the session. There was a statistically significant interaction (time×position) for temperature among the different body parts during the WBC, and for skin temperature among different body parts after the cryo-cabin session. Statistically significant time effects during and following cryo-cabin session were present for all body parts. We showed that actual temperature in the cryo-cabin is substantially different from the one reported by the manufacturer. Thermal response after cryo-cabin session is similar to response observed after cryo-chamber cold exposure reported in previously published studies. This could be of great practical value as cryo-cabins are less expensive and easier to use compared to cryo-chambers.  相似文献   
35.
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.Nucleoside hydrolases or nucleoside N-ribohydrolases (NRHs; EC 3.2.2.-) are glycosidases that catalyze the cleavage of the N-glycosidic bond in nucleosides to enable the recycling of the nucleobases and Rib (Fig. 1A). The process by which nucleosides and nucleobases are recycled is also known as salvaging and is a way of conserving energy, which would otherwise be needed for the de novo synthesis of purine- and pyrimidine-containing compounds. During the salvage, bases and nucleosides can be converted into nucleoside monophosphates by the action of phosphoribosyltransferases and nucleoside kinases, respectively, and further phosphorylated into nucleoside diphosphates and triphosphates (Moffatt et al., 2002; Zrenner et al., 2006; Fig. 1B). Uridine kinase and uracil phosphoribosyl transferase are key enzymes in the pyrimidine-salvaging pathway in plants (Mainguet et al., 2009; Chen and Thelen, 2011). Adenine phosphoribosyltransferase and adenosine kinase (ADK) are important in purine salvaging (Moffatt and Somerville, 1988; Moffatt et al., 2002), and their mutants cause reductions in fertility or sterility, changes in transmethylation, and the formation of abnormal cell walls. In addition, both enzymes were also reported to play roles in cytokinin metabolism (Moffatt et al., 1991, 2000; von Schwartzenberg et al., 1998; Schoor et al., 2011). Cytokinins (N6-substituted adenine derivatives) are plant hormones that regulate cell division and numerous developmental events (Mok and Mok, 2001; Sakakibara, 2006). Cytokinin ribosides are considered to be transport forms and have little or no activity.Open in a separate windowFigure 1.A, Scheme of the reactions catalyzed by plant NRHs when using purine (inosine), pyrimidine (uridine), and cytokinin (iPR) ribosides as the substrates. B, Simplified schematic overview of cytokinin, purine, and pyrimidine metabolism in plants. The diagram is adapted from the work of Stasolla et al. (2003) and Zrenner et al. (2006) with modifications. The metabolic components shown are as follows: 1, cytokinin nucleotide phosphoribohydrolase; 2, adenine phosphoribosyltransferase; 3, adenosine kinase; 4, 5′-nucleotidase; 5, adenosine phosphorylase; 6, purine/pyrimidine nucleoside ribohydrolase; 7, cytokinin oxidase/dehydrogenase; 8, AMP deaminase; 9, hypoxanthine phosphoribosyltransferase; 10, inosine kinase; 11, inosine-guanosine phosphorylase; 12, IMP dehydrogenase; 13, xanthine dehydrogenase; 14, 5′-nucleotidase; 15, GMP synthase; 16, hypoxanthine-guanine phosphoribosyltransferase; 17, guanosine deaminase; 18, guanine deaminase; 19, guanosine kinase; 20, uracil phosphoribosyltransferase; 21, uridine cytidine kinase; 22, pyrimidine 5′-nucleotidase; 23, cytidine deaminase; 24, adenosine/adenine deaminase. CK, Cytokinin; CKR, cytokinin riboside; CKRMP, cytokinin riboside monophosphate.NRHs are metalloproteins first identified and characterized in parasitic protozoa such as Trypanosoma, Crithidia, and Leishmania species that rely on the import and salvage of nucleotide derivatives. They have since been characterized in other organisms such as bacteria, yeast, and insects (Versées and Steyaert, 2003) but never in mammals (Parkin et al., 1991). They have been divided into four classes based on their substrate specificity: nonspecific NRHs, which hydrolyze inosine and uridine (IU-NRHs; Parkin et al., 1991; Shi et al., 1999); purine-specific inosine/adenosine/guanosine NRHs (Parkin, 1996); the 6-oxopurine-specific guanosine/inosine NRHs (Estupiñán and Schramm, 1994); and the pyrimidine nucleoside-specific cytidine/uridine NRHs (CU-NRHs; Giabbai and Degano, 2004). All NRHs exhibit a stringent specificity for the Rib moiety and differ in their preferences regarding the nature of the nucleobase. Crystal structures are available for empty NRH or in complex with inhibitors from Crithidia fasciculata (CfNRH; Degano et al., 1998), Leishmania major (LmNRH; Shi et al., 1999), and Trypanosoma vivax (TvNRH; Versées et al., 2001, 2002). The structures of two CU-NRHs from Escherichia coli, namely YeiK (Iovane et al., 2008) and YbeK (rihA; Muzzolini et al., 2006; Garau et al., 2010), are also available. NRHs are believed to catalyze N-glycosidic bond cleavage by a direct displacement mechanism. An Asp from a conserved motif acts as a general base and abstracts a proton from a catalytic water molecule, which then attacks the C1′ atom of the Rib moiety of the nucleoside. Kinetic isotope-effect studies on CfNRH (Horenstein et al., 1991) showed that the substrate’s hydrolysis proceeds via an oxocarbenium ion-like transition state and is preceded by protonation at the N7 atom of the purine ring, which lowers the electron density on the purine ring and destabilizes the N-glycosidic bond. A conserved active-site His is a likely candidate for this role in IU-NRHs and CU-NRHs. In the transition state, the C1′-N9 glycosidic bond is almost 2 Å long, with the C1′ atom being sp2 hybridized while the C3′ atom adopts an exo-conformation, and the whole ribosyl moiety carries a substantial positive charge (Horenstein et al., 1991).Several NRH enzymes have been identified in plants, including a uridine-specific NRH from mung bean (Phaseolus radiatus; Achar and Vaidyanathan, 1967), an inosine-specific NRH (EC 3.2.2.2) and a guanosine-inosine-specific NRH, both from yellow lupine (Lupinus luteus; Guranowski, 1982; Szuwart et al., 2006), and an adenosine-specific NRH (EC 3.2.2.7) from coffee (Coffea arabica), barley (Hordeum vulgare), and wheat (Triticum aestivum; Guranowski and Schneider, 1977; Chen and Kristopeit, 1981; Campos et al., 2005). However, their amino acid sequences have not been reported so far. A detailed study of the NRH gene family from Arabidopsis (Arabidopsis thaliana) has recently been reported (Jung et al., 2009, 2011). The AtNRH1 enzyme exhibits highest hydrolase activity toward uridine and xanthosine. It can also hydrolyze the cytokinin riboside N6-(2-isopentenyl)adenosine (iPR), which suggests that it may also play a role in cytokinin homeostasis. However, Riegler et al. (2011) analyzed the phenotypes of homozygous nrh1 and nrh2 single mutants along with the homozygous double mutants and concluded that AtNRHs are probably unimportant in cytokinin metabolism.Here, we identify and characterize plant IU-NRHs from two different model organisms, Physcomitrella patens and maize (Zea mays), combining structural, enzymatic, and in planta functional approaches. The moss P. patens was chosen to represent the bryophytes, which can be regarded as being evolutionarily basal terrestrial plants, and is suitable for use in developmental and metabolic studies (Cove et al., 2006; von Schwartzenberg, 2009), while maize is an important model system for cereal crops. We report the crystal structures of NRH enzymes from the two plant species, PpNRH1 and ZmNRH3. Based on these structures, we performed site-directed mutagenesis experiments and kinetic analyses of point mutants of PpNRH1 in order to identify key residues involved in nucleobase interactions and catalysis. To analyze the physiological role of the PpNRHs, single knockout mutants were generated. NRH deficiency caused significant changes in the levels of purine, pyrimidine, and cytokinin metabolites relative to those seen in the wild type, illustrating the importance of these enzymes in nucleoside and cytokinin metabolism.  相似文献   
36.
37.
Surfactin is a cyclic lipopeptide antibiotic that disturbs the integrity of the cytoplasmic membrane. In this study, the role of membrane lipids in the adaptation and possible surfactin tolerance of the surfactin producer Bacillus subtilis ATCC 21332 was investigated. During a 1-day cultivation, the phospholipids of the cell membrane were analyzed at the selected time points, which covered both the early and late stationary phases of growth, when surfactin concentration in the medium gradually rose from 2 to 84 μmol·l− 1. During this time period, the phospholipid composition of the surfactin producer's membrane (Sf+) was compared to that of its non-producing mutant (Sf). Substantial modifications of the polar head group region in response to the presence of surfactin were found, while the fatty acid content remained unaffected. Simultaneously with surfactin production, a progressive accumulation up to 22% of the stress phospholipid cardiolipin was determined in the Sf+ membrane, whereas the proportion of phosphatidylethanolamine remained constant. At 24 h, cardiolipin was found to be the second major phospholipid of the membrane. In parallel, the Laurdan generalized polarization reported an increasing rigidity of the lipid bilayer. We concluded that an enhanced level of cardiolipin is responsible for the membrane rigidification that hinders the fluidizing effect of surfactin. At the same time cardiolipin, due to its negative charge, may also prevent the surfactin-membrane interaction or surfactin pore formation activity.  相似文献   
38.
Beneficial effects of whole grains of cereals and pseudocereals and their fractions to human physiology are well known and broadly published. Especially secondary metabolites, dominantly from the category of phenolics (or polyphenols), beneficially influence the health physiology and/or prevent disease progress. Within the frame of this study, ten genotypes of four cereals or pseudocereals, respectively, were chosen for their antioxidant activity, determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and β-carotene-linoleic acid bleaching model (BCLM) mechanisms. Tested genotypes were selected from primary collection based on their antioxidant activity values, as well as higher level of flavonoids or phenolic acids. The stability of antioxidant properties after thermic, acidic, and basic treatments was evaluated. The oat cultivar Sirene and buckwheat cultivar Bogatyr expressed high level of the antioxidant activity, but they lost it due to all types of treatment. Oppositely, treatments increased antioxidant activities in some samples, especially in oat cultivar Maris Oberon, wheat cultivar Ines and Karolinum, or partially in barley cultivars Kompakt (after basic treatment) and Jubilant (acidic and basic treatments). The lack of the antioxidant activity could be observed due to destruction of the key compounds responsible for the antioxidant effect, whereas the increasing activity could be seen due to release of the aglycons from glycosidic forms after treatment. The stability of antioxidant properties could be a valuable parameter of the raw material for manufacturing special foods with functional properties.  相似文献   
39.
The occurrence of members of the highly diverse Daphnia longispina complex in Southern and Central Asian high-mountain lakes has been recognized for more than a century. Until now, however, no molecular data have been available for these populations inhabiting the “Roof of the World.” Here, we present the first identification for D. gr. longispina from that region based on a molecular phylogeny. Our findings show that alpine lakes in the Pamir and Himalaya mountains host populations of widespread species of the complex, for which these are the highest known localities. A spineless morph from the Himalaya region, previously labeled as D. longispina var. aspina, was clustering tightly with D. dentifera, while a population from the Pamir mountain range was grouped with D. longispina. In addition, we analyzed ecological data available for lakes in the Khumbu region (Himalaya) to investigate ecological preferences of non-pigmented D. gr. longispina. The identified factors can at least partly be related to avoidance of high UV conditions by this species. We conclude that the widespread species D. dentifera and D. longispina also colonized the Asian high-mountain lakes, and identify the need for further research to trace the possible effect of rapid environmental changes in this region on the diversity and ecology of high-altitude Daphnia populations.  相似文献   
40.

Background

Current plant – herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions.

Methodology/Findings

We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands.

Conclusions

Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality only at the community level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号