首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   8篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
31.
We investigated the decomposability of soil organic matter (SOM) along a chronosequence of rainforest sites in Hawaii that form a natural fertility gradient and at two long-term fertilization experiments. To estimate turnover times and pool sizes of organic matter, we used two independent methods: (1) long-term incubations and (2) a three-box soil model constrained by radiocarbon measurements. Turnover times of slow-pool SOM (the intermediate pool between active and passive pools) calculated from incubations ranged from 6 to 20 y in the O horizon and were roughly half as fast in the A horizon. The radiocarbon-based model yielded a similar pattern but slower turnover times. The calculation of the 14C turnover times is sensitive to the lag time between photosynthesis and incorporation of organic C into SOM in a given horizon. By either method, turnover times at the different sites varied two- or threefold in soils with the same climate and vegetation community. Turnover times were fastest at the sites of highest soil fertility and were correlated with litter decay rates and primary productivity. However, experimental fertilization at the two least-fertile sites had only a small and inconsistent effect on turnover, with N slowing turnover and P slightly speeding it at one site. These results support studies of litter decomposition in suggesting that while plant productivity can respond rapidly to nutrient additions, decomposition may respond much more slowly to added nutrients.  相似文献   
32.
The role of polyphenols in terrestrial ecosystem nutrient cycling   总被引:3,自引:0,他引:3  
Interspecific variation in polyphenol production by plants has been interpreted in terms of defense against herbivores. Several recent lines of evidence suggest that polyphenols also influence the pools and fluxes of inorganic and organic soil nutrients. Such effects could have far-ranging consequences for nutrient competition among and between plants and microbes, and for ecosystem nutrient cycling and retention. The significance of polyphenols for nutrient cycling and plant productivity is still uncertain, but it could provide an alternative or complementary explanation for the variability in polyphenol production by plants.  相似文献   
33.
Consensus on climate change   总被引:1,自引:0,他引:1  
  相似文献   
34.
Porder S  Paytan A  Vitousek PM 《Oecologia》2005,142(3):440-449
We quantified variation in plant nutrient concentrations and provenance along catenas in landscapes of three different ages (0.15, 1.4, and 4.1 ma) in the Hawaiian Islands. Strontium (Sr) isotopes demonstrate that erosion provides a renewed source of rock-derived nutrients to slopes in landscapes of all ages, in some cases reversing a million years of ecosystem development in a distance of 100 m. However the effects of this input vary with landscape age. Plants on uneroded surfaces in a 0.15-ma landscape derive ~20% of their Sr from local bedrock (foliar 87Sr/86Sr~0.7085), while on adjacent slopes this increases to ~80% (foliar 87Sr/86Sr~0.7045). Despite this shift in provenance, foliar N and P do not vary systematically with slope position. Conversely, eroded slopes in a 4.1-ma landscape show smaller increases in rock-derived cations relative to stable uplands (foliar 87Sr/86Sr~0.7075 vs 0.7090), but have >50% higher foliar N and P. These results demonstrate both that erosion can greatly increase nutrient availability in older landscapes, and that the ecological effects of erosion vary with landscape age. In addition, there can be as much biogeochemical variation on fine spatial scales in eroding landscapes as there is across millions of years of ecosystem development on stable surfaces.  相似文献   
35.
It is unusual for seasonal breeders to frequently skip opportunities for reproduction. We investigated the relationship between physiological state and reproductive decision-making in Galápagos marine iguanas (Amblyrhynchus cristatus), a species in which females typically reproduce biennially, although the proportion of breeding individuals varies significantly across years. Nearly all adult-sized females initiated follicular development prior to the lekking period, but 38% of females resorbed all developing follicles 5-15 days before the start of copulations. Receptive and non-receptive females differed in reproductive hormones during the mate choice period. Testosterone peaked in receptive females immediately prior to copulation, indicating that testosterone or its derivative estradiol likely mediates female receptivity in Galápagos marine iguanas. Non-receptive females showed significant peaks in both testosterone and progesterone during follicular atresia, suggesting that these hormones may be involved in inhibiting vitellogenesis. Two to three weeks prior to the period of reproductive decision-making (and the onset of follicular atresia in non-receptive females) receptive females were in higher body condition, were developing larger follicles, and had lower levels of both baseline and stress-induced corticosterone. Reproduction is extremely costly in this long-lived species, and increases the likelihood of mortality in the year following breeding; females could therefore gain significant benefits from being attuned to indicators of reproductive success. We suggest that corticosterone may modulate reproductive decisions by altering individual sensitivity to both internal and external cues of the likelihood of successful reproduction.  相似文献   
36.
Biogeochemistry - We used a simple “toy” model to aid in the evaluation of the controls of biogeochemical patterns along a climate gradient. The model includes simplified treatments of...  相似文献   
37.
New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.  相似文献   
38.

Nitrogen (N) limitation to net primary production is widespread and influences the responsiveness of ecosystems to many components of global environmental change. Logic and both simple simulation (Vitousek and Fieldin in Biogeochemistry 46: 179–202, 1999) and analytical models (Menge in Ecosystems 14:519–532, 2011) demonstrate that the co-occurrence of losses of N in forms that organisms within an ecosystem cannot control and barriers to biological N fixation (BNF) that keep this process from responding to N deficiency are necessary for the development and persistence of N limitation. Models have focused on the continuous process of leaching losses of dissolved organic N in biologically unavailable forms, but here we use a simple simulation model to show that discontinuous losses of ammonium and nitrate, normally forms of N whose losses organisms can control, can be uncontrollable by organisms and can contribute to N limitation under realistic conditions. These discontinuous losses can be caused by temporal variation in precipitation or by ecosystem-level disturbance like harvest, fire, and windthrow. Temporal variation in precipitation is likely to increase and to become increasingly important in causing N losses as anthropogenic climate change proceeds. We also demonstrate that under the conditions simulated here, differentially intense grazing on N- and P-rich symbiotic N fixers is the most important barrier to the responsiveness of BNF to N deficiency.

  相似文献   
39.
Glucocorticoid hormones (CORT) are predicted to promote adaptation to variable environments, yet little is known about the potential for CORT secretion patterns to respond to selection in free-living populations. We assessed the heritable variation underlying differences in hormonal phenotypes using a cross-foster experimental design with nestling North American barn swallows (Hirundo rustica erythrogaster). Using a bivariate animal model, we partitioned variance in baseline and stress-induced CORT concentrations into their additive genetic and rearing environment components and estimated their genetic correlation. Both baseline and stress-induced CORT were heritable with heritability of 0.152 and 0.343, respectively. We found that the variation in baseline CORT was best explained by rearing environment, whereas the variation in stress-induced CORT was contributed to by a combination of genetic and environmental factors. Further, we did not detect a genetic correlation between these two hormonal traits. Although rearing environment appears to play an important role in the secretion of both types of CORT, our results suggest that stress-induced CORT levels are underlain by greater additive genetic variance compared with baseline CORT levels. Accordingly, we infer that the glucocorticoid response to stress has a greater potential for evolutionary change in response to selection compared with baseline glucocorticoid secretion patterns.  相似文献   
40.
We evaluated soil phosphorus (P) fractions, other soil characteristics, and rates of symbiotic N2 fixation across a substrate-age gradient in Hawaii that was dominated by the leguminous tree Acacia koa (koa). Patterns of soil P observed on this gradient were compared to those on a slightly wetter gradient dominated by the nonfixer Metrosideros polymorpha (ohia). Along both gradients, concentrations of primary-mineral P fell sharply between the young and intermediate-aged sites, while labile inorganic P declined most steeply between the intermediate-aged and old sites. The most marked difference between the two gradients was that total soil carbon (C), nitrogen (N), and P, as well as nonoccluded organic P, were more variable across the ohia gradient, increasing to the intermediate-aged sites, then declining sharply at the old site. On the koa gradient, specific nitrogenase activity, measured by the acetylene-reduction (AR) assay, decreased three- to eightfold between the young site and the intermediate-aged and old sites, respectively. Nodule biomass showed no clear pattern. N2 fixation rates, estimated by combining AR activity and nodule biomass measurements, were up to 8 kg N · ha−1 · y−1 at the young site and no more than 2 kg N · ha−1 · y−1 at the older sites, suggesting that koa may be a modest source of N in these Hawaiian forests. Received 26 September 2000; accepted 15 February 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号