首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   14篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   10篇
  2013年   13篇
  2012年   18篇
  2011年   12篇
  2010年   11篇
  2009年   2篇
  2008年   8篇
  2007年   11篇
  2006年   12篇
  2005年   7篇
  2004年   8篇
  2003年   9篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   5篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
71.
Wnt gradients elicit distinct cellular responses, such as proliferation, specification, differentiation and survival in a dose-dependent manner. Porcupine (PORCN), a membrane-bound O-acyl transferase (MBOAT) that resides in the endoplasmic reticulum, catalyses the addition of monounsaturated palmitate to Wnt proteins and is required for Wnt gradient formation and signalling. In humans, PORCN mutations are causal for focal dermal hypoplasia (FDH), an X-linked dominant syndrome characterized by defects in mesodermal and endodermal tissues. PORCN is also an emerging target for cancer therapeutics. Despite the importance of this enzyme, its structure remains poorly understood. Recently, the crystal structure of DltB, an MBOAT family member from bacteria, was solved. In this report, we use experimental data along with homology modelling to DltB to determine the membrane topology of PORCN. Our studies reveal that PORCN has 11 membrane domains, comprising nine transmembrane spanning domains and two reentrant domains. The N-terminus is oriented towards the lumen while the C-terminus is oriented towards the cytosol. Like DltB, PORCN has a funnel-like structure that is encapsulated by multiple membrane-spanning helices. This new model for PORCN topology allows us to map residues that are important for biological activity (and implicated in FDH) onto its three-dimensional structure.  相似文献   
72.
Suberin is found in a variety of tissues, such as root endoderms and periderms, storage tuber periderms, tree cork layer, and seed coats. It acts as a hydrophobic barrier to control the movement of water, gases, and solutes as well as an antimicrobial barrier. Suberin consists of polymerized phenolics, glycerol, and a variety of fatty acid derivatives, including primary fatty alcohols. We have conducted an in-depth analysis of the distribution of the C18:0 to C22:0 fatty alcohols in Arabidopsis (Arabidopsis thaliana) roots and found that only 20% are part of the root suberin polymer, together representing about 5% of its aliphatic monomer composition, while the remaining 80% are found in the nonpolymeric (soluble) fraction. Down-regulation of Arabidopsis FATTY ACYL REDUCTASE1 (FAR1), FAR4, and FAR5, which collectively produce the fatty alcohols found in suberin, reduced their levels by 70% to 80% in (1) the polymeric and nonpolymeric fractions from roots of tissue culture-grown plants, (2) the suberin-associated root waxes from 7-week-old soil-grown plants, and (3) the seed coat suberin polymer. By contrast, the other main monomers of suberin were not altered, indicating that reduced levels of fatty alcohols did not influence the suberin polymerization process. Nevertheless, the 75% reduction in total fatty alcohol and diol loads in the seed coat resulted in increased permeability to tetrazolium salts and a higher sensitivity to abscisic acid. These results suggest that fatty alcohols and diols play an important role in determining the functional properties of the seed coat suberin barrier.Suberin is a cell wall-linked polymeric barrier that plays a critical role in the survival of plants by protecting them against various biotic and abiotic stresses. It primarily acts as a hydrophobic barrier to control the movement of water, gases, and solutes, but also contributes to the strength of the cell wall (Ranathunge et al., 2011). Suberin is deposited at the inner face of primary cell walls next to the plasma membrane (Kolattukudy, 1980; Franke and Schreiber, 2007). It is typically found as lamellae (alternating dark and light bands when viewed by transmission electron microscopy) in the endodermis, exodermis, and peridermis of roots, as well as in the peridermis of underground storage tubers (Bernards, 2002). Suberin is also found in shoot periderms of trees (i.e. cork layer) and in seed coats (Molina et al., 2006, 2008) and is deposited in response to wounding (Kolattukudy, 2001).Suberin is a polymer consisting of aliphatics (fatty acid derivatives), phenolics, and glycerol. The predominant aliphatic components of suberin are ω-hydroxy fatty acids, α,ω-dicarboxylic acids, very-long-chain fatty acids, and primary fatty alcohols, while the major phenolic components are p-hydroxycinnamic acids, especially ferulic acid (Kolatukudy, 1980; Bernards et al., 1995; Pollard et al., 2008; Ranathunge et al., 2011). In the periderm of underground storage organs, suberin is found in association with waxes, which are isolated either by extensive extraction in solvent (Soliday et al., 1979; Serra et al., 2009) or by brief immersion of tubers in chloroform (Espelie et al., 1980). These suberin-associated waxes consist of linear aliphatics (e.g. alkanes, fatty acids, and fatty alcohols), which are similar to cuticular wax components of aerial tissues but generally of shorter chain lengths (Espelie et al., 1980). In waxes extracted from 3-week-old wounded potato (Solanum tuberosum) periderms, alkyl ferulates (i.e. ferulic acid linked by an ester bond to a C16:0–C32:0 fatty alcohol) represent up to 60% of the total wax load (Schreiber et al., 2005). Root waxes are also found in 6- to 7-week-old mature taproots of Arabidopsis (Arabidopsis thaliana) with a fully developed periderm (Li et al., 2007; Kosma et al., 2012). They are enriched in alkyl hydroxycinnamates (AHCs) made of C18:0 to C22:0 fatty alcohols esterified with coumaric, caffeic, or ferulic acids (Kosma et al., 2012). The monomer composition (in terms of major chemical species and chain length) of both suberin and suberin-associated waxes varies considerably between plant species, tissues, and developmental stages. Aliphatic suberin and suberin-associated waxes are considered the major contributors to the diffusion resistance of suberized cell walls to radial transport of water and solutes (Soliday et al., 1979; Espelie et al., 1980; Zimmermann et al., 2000; Ranathunge and Schreiber, 2011). The organization of suberin components in the lamellated structure as well as how waxes may be associated with the polymer is a matter of debate (Graça and Santos, 2007).Primary fatty alcohols are long-chain hydrocarbons containing a single hydroxyl group at the terminal position. They are ubiquitously detected as components of the suberin polymer, representing 1% to 10% of the total monomer mass recovered after transesterification (Holloway, 1983; Bernards, 2002; Pollard et al., 2008). Primary fatty alcohols are also typical components of suberin-associated waxes, where they can be found either in free form or linked by an ester bond with a hydroxycinnamic acid (i.e. as AHCs; Soliday et al., 1979; Espelie et al., 1980; Bernards and Lewis 1992; Li et al., 2007; Kosma et al., 2012). In mechanically isolated endodermis of soybean (Glycine max) roots, fatty alcohols represent about 1.5% and 0.2% of the total aliphatics found in suberin-associated waxes and suberin polymer, respectively (Thomas et al., 2007). In onion (Allium cepa) root exodermis, fatty alcohols (C14:0–C28:0) account for 7% to 12% of the soluble fraction, while the suberin fraction contains only C22:0 fatty alcohol, which makes up 3% of the suberin fraction across all exodermal maturation zones (Meyer et al., 2011). In suberizing potato periderms 7 d post wounding, C16:0 to C28:0 fatty alcohols represent about 10% and 18% of the total aliphatics in the insoluble poly(aliphatic) domain (suberin polymer) and in the soluble (nonpolymeric) fraction, respectively (Yang and Bernards, 2006). A similar study on native periderms from 21-d-stored potato (Serra et al., 2009) reported that fatty alcohols represent about 20% of the total aliphatic components found in the suberin polyester, while unlinked fatty alcohols and alkyl ferulates accounted for about 23% and 44% of the total aliphatics in the soluble waxes.In Arabidopsis, C18:0, C20:0, and C22:0 fatty alcohols account for slightly less than 3% of the polymerized aliphatics in roots of soil-grown plants (Domergue et al., 2010), but as much as 36% [w/w] of the soluble wax load (Li et al., 2007). Arabidopsis fatty acyl reductases FAR1 (At5g22500), FAR4 (At3g44540), and FAR5 (At3g44550) generate, respectively, the C22:0, C20:0, and C18:0 fatty alcohol present in the suberin of root, seed coat, and wounded leaf tissues (Domergue et al., 2010). These three enzymes also generate the C18:0 to C22:0 fatty alcohol components that make up AHCs of root waxes (Kosma et al., 2012). Although one particular chain length of primary alcohol was reduced in each far single mutant line (C18:0-OH, C20:0-OH, and C22:0-OH in far5, far4, and far1, respectively), the total fatty alcohol load of the suberin polymer and its composition were only slightly affected and mutant plants had no obvious developmental or physiological defects (Domergue et al., 2010). In this study, we report on the distribution of primary fatty alcohols in the soluble (nonpolymeric) and insoluble (suberin polymer) fractions from mature roots of Arabidopsis. We report that far double and triple mutants have highly reduced fatty alcohol levels, in a chain length-specific manner, in both fractions as well as in the seed coat suberin polymer. The significant reductions in total fatty alcohol and diol levels in the seed coat of these mutants lead to increased permeability and higher sensitivity to abscisic acid (ABA), bringing to light insights on the roles of fatty alcohols and diols in determining functional properties of suberin.  相似文献   
73.

Background

The tripeptide γ-glutamylcysteinylglycine or glutathione (GSH) has demonstrated protective abilities against the detrimental effects of oxidative stress within the human body, as well as protection against infection by exogenous microbial organisms.

Scope of review

In this review we describe how GSH works to modulate the behavior of many cells including the cells of the immune system, augmenting the innate and the adaptive immunity as well as conferring protection against microbial, viral and parasitic infections. This article unveils the direct antimicrobial effects of GSH in controlling Mycobacterium tuberculosis (M. tb) infection within macrophages. In addition, we summarize the effects of GSH in enhancing the functional activity of various immune cells such as natural killer (NK) cells and T cells resulting in inhibition in the growth of M. tb inside monocytes and macrophages. Most importantly we correlate the decreased GSH levels previously observed in individuals with pulmonary tuberculosis (TB) with an increase in the levels of pro-inflammatory cytokines which aid in the growth of M. tb.

Major conclusions

In conclusion, this review provides detailed information on the protective integral effects of GSH along with its therapeutic effects as they relate to the human immune system and health.

General significance

It is important to note that the increases in the levels of pro-inflammatory cytokines are not only detrimental to the host due to the sequel that follow such as fever and cachexia, but also due to the alteration in the functions of immune cells. The additional protective effects of GSH are evident after sequel that follows the depletion of this antioxidant. This is evident in a condition such as Cystic Fibrosis (CF) where an increased oxidant burden inhibits the clearance of the affecting organism and results in oxidant-induced anti-protease inhibition. GSH has a similar protective effect in protozoans as it does in human cells. Thus GSH is integral to the survival of some of the protozoans because some protozoans utilize the compound trypanothione [T(SH)2] as their main antioxidant. T(SH)2 in turn requires GSH for its production. Hence a decrease in the levels of GSH (by a known inhibitor such as buthionine sulfoximine [BSO] can have adverse effects of the protozoan parasites. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   
74.
Schistura porocephala, a new nemacheilid species, is described from a stream that drains into the Mat River (Koladyne basin), India. It is characterized by the presence of prominent pores in the cephalic lateral line system; an incomplete lateral line; 20–23 thin dark olivaceous bars on the body, often bifurcated from the dorsolateral region; a depressed head and body anterior to the dorsal fin origin; and an elongated suborbital flap arising in front of the nostril and extending to the anterior one-third of the eye diameter in males.  相似文献   
75.
Sialyl Lewis x (sLex) plays an important role in cancer metastasis. But, the mechanism for its production in metastatic cancers remains unclear. The objective of current study was to examine the effects of a proinflammatory cytokine on the expression of glycosyltransferase and sulfotransferase genes involved in the synthesis of selectin ligands in a prostate cancer cell line. Androgen-independent human lymph node-derived metastatic prostate cancer cells (C-81 LNCaP), which express functional androgen receptor and mimic the castration-resistant advanced prostate cancer, were used. TNFα treatment of these cells increased their binding to P-, E- and L-selectins, anti-sLex antibody, and anti-6-sulfo-sialyl Lewis x antibody by 12%, 240%, 43%, 248% and 21%, respectively. Also, the expression of C2GnT-1, B4GalT1, GlcNAc6ST3, and ST3Gal3 genes was significantly upregulated. Further treatment of TNFα-treated cells with either anti-sLex antibody or E-selectin significantly suppressed their in vitro migration (81% and 52%, respectively) and invasion (45% and 56%, respectively). Our data indicate that TNFα treatment enhances the motility and invasion properties of LNCaP C-81 cells by increasing the formation of selectin ligands through stimulation of the expression of selective glycosyl- and sulfotransferase genes. These results support the hypothesis that inflammation contributes to cancer metastasis.  相似文献   
76.
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. 2H?O and acetaminophen were ingested and [1-13C]acetate infused in 11 nondiabetic subjects after a 16-h fast. Plasma and urinary glucuronide enrichments were measured using nuclear magnetic resonance spectroscopy before and during a 0.35 mU·kg FFM?1·min?1 insulin infusion. Rates of endogenous glucose production measured with [3-3H]- and [6,6-2H?]glucose did not differ either before (14.0 ± 0.7 vs. 13.8 ± 0.7 μmol·kg?1·min?1) or during the clamp (10.4 ± 0.9 vs. 10.9 ± 0.7 μmol·kg?1·min?1), consistent with equilibration and quantitative removal of tritium during triose isomerase exchange. Plasma [3-13C] glucose-to-[4-13C]glucose and urinary [3-13C] glucuronide-to-[4-13C]glucuronide ratios were <1.0 (P < 0.001) in all subjects both before (0.66 ± 0.04 and 0.60 ± 0.04) and during (059 ± 0.05 and 0.56 ± 0.06) the insulin infusion, respectively, indicating that ~35-45% of the labeling of the 5th carbon of glucose by deuterium was due to transaldolase exchange rather than gluconeogenesis. When corrected for transaldolase exchange, rates of gluconeogenesis were lower (P < 0.001) and glycogenolysis higher (P < 0.001) than uncorrected rates both before and during the insulin infusion. In conclusion, assuming negligible dilution by glycerol and near-complete triose isomerase equilibration, these data provide strong experimental evidence that transaldolase exchange occurs in humans, resulting in an overestimate of gluconeogenesis and an underestimate of glycogenolysis when measured with the 2H?O method. Use of appropriate 13C tracers provides a means of correcting for transaldolase exchange.  相似文献   
77.
78.
Sialyl Lewis X is a tumor-associated antigen frequently found in the advanced cancers. However, the mechanism for the production of this cancer antigen is not entirely clear. The objective of this study is to examine whether epigenetics is involved in the regulation of the formation of this antigen. We observed an increase of sialyl Lewis X in HCT15 cells, a colon cancer cell line, treated with 5-Aza-2'-deoxycytidine. This treatment enhanced the expression of β-galactoside:α2,3-sialyltransferase 6 gene and sialyl Lewis X on MUC1, and the adherence of these cells to E-selectin under dynamic flow conditions. In addition, 5-Aza-2'-deoxycytidine treatment inhibited methylation of β-galactoside:α2,3-sialyltransferase 6 gene and siRNA knockdown of this gene drastically reduced sialyl Lewis X without affecting MUC1 expression. We conclude that 5-Aza-2'-deoxycytidine treatment increases sialyl Lewis X on MUC1 by stimulating the β-galactoside:α2,3-sialyltransferase 6 gene via inhibition of DNA methylation. Increased sialyl Lewis X by 5-Aza-2'-deoxycytidine raises a concern about the safety of this chemotherapeutic drug. In addition, β-galactoside:α2,3-sialyltransferase 6 gene may be a potential therapeutic target for suppressing tumorigenicity of colon cancer.  相似文献   
79.
Glutathione (GSH), a tripeptide antioxidant, is essential for cellular homeostasis and plays a vital role in diverse cellular functions. Individuals who are infected with Human immuno deficiency virus (HIV) are known to be susceptible to Mycobacterium tuberculosis (M. tb) infection. We report that by enhancing GSH levels, T-cells are able to inhibit the growth of M. tb inside macrophages. In addition, those GSH-replenished T cell cultures produced increased levels of Interleukin-2 (IL-2), Interleukin-12 (IL-12), and Interferon-gamma (IFN-γ), cytokines, which are known to be crucial for the control of intracellular pathogens. Our study reveals that T lymphocytes that are derived from HIV infected individuals are deficient in GSH, and that this deficiency correlates with decreased levels of Th1 cytokines and enhanced growth of M. tb inside human macrophages.  相似文献   
80.
The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号