首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2998篇
  免费   289篇
  国内免费   2篇
  2024年   2篇
  2023年   22篇
  2022年   34篇
  2021年   125篇
  2020年   82篇
  2019年   94篇
  2018年   97篇
  2017年   86篇
  2016年   141篇
  2015年   216篇
  2014年   233篇
  2013年   279篇
  2012年   302篇
  2011年   251篇
  2010年   178篇
  2009年   115篇
  2008年   215篇
  2007年   176篇
  2006年   161篇
  2005年   140篇
  2004年   105篇
  2003年   89篇
  2002年   72篇
  2001年   16篇
  2000年   10篇
  1999年   11篇
  1998年   14篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1973年   1篇
排序方式: 共有3289条查询结果,搜索用时 265 毫秒
991.
Diversity Arrays Technology (DArT) provides whole genome profiling for hundreds to thousands of polymorphic markers in a single assay using a high-throughput microarray platform. The presented work aimed to establish DArT genotyping for the genetically challenging genome of sugarcane. Due to the genome complexity of this sugar-producing crop of high economic importance, an application of DArT genotyping to this species required extensive testing and optimization. As the method of genome complexity reduction determines the efficiency of polymorphism identification in DArT, various approaches and several methods were tested, in order to establish the most optimal. The sugarcane DArT markers generated with these established methods identified high genetic differentiation of sugarcane ancestral species from modern cultivars, in agreement with the data available for other types of molecular markers for this crop. The majority of sugarcane DArT markers segregated in a Mendelian fashion and were readily incorporated into the framework genetic map. As the DArT markers are sequence-ready genomic clones, we sequenced 384 clones and found that one-third of sequenced markers came from the transcribed portion of the sugarcane genome. The presented results further validate the potential of DArT technology in providing cost-effective genetic profiles for plants, irrespective of their genome complexity, for effective applications in molecular-assisted breeding, diversity analysis or genetic identity testing.  相似文献   
992.
Egg parasitoids of the stink bug Edessa meditabunda (F) were studied on rattlepod Crotalaria spectabilis used in soybean crop rotation in Campo Novo do Parecis, Mato Grosso state, central western Brazil. Seven species of parasitoids were found: two Encyrtidae, one Eurytomidae, and four Platygastridae. The occurrence of Trissolcus euchisti (Ashmead) and Trissolcus elimatus Johnson (Platygastridae) on eggs of E. meditabunda is recorded for the first time. Moreover, this is the first record of T. elimatus and T. euchisti from Brazil.  相似文献   
993.
A novel series of isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives was synthesized and evaluated in vitro against various human cancer cell lines for antiproliferative activity. These new compounds displayed activity against leukemia and breast cancer cell lines in the 3- to 18-μM concentration range.  相似文献   
994.
A novel hybrid dendrimer (TRANSGEDEN) that combines a conjugated rigid polyphenylenevinylene (PPV) core with flexible polyamidoamine (PAMAM) branches at the surface was synthesized and characterized. The potential of this material as a nonviral gene delivery system was also examined, and it was observed that dendriplexes formed by TRANSGEDEN and small interfering ribonucleic acids (siRNAs) can be incorporated into >90% of neuronal cells without any toxicity up to a dendrimer concentration of 3 μM. TRANSGEDEN was used to deliver a specific siRNA to rat cerebellar granular neurons (CGNs) to knock down the cofilin-1 protein. Cofilin-1 removal partially protects CGNs from N-methyl D-aspartate (NMDA)-mediated neuronal death.  相似文献   
995.
The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32×10−12, OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 × 10−6, OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39×10−7, OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79×10−61, OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57×10−76, OR = 8.84), and in NOTCH4 with ACA P = 8.84×10−21, OR = 0.55) and ATA (P = 1.14×10−8, OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.  相似文献   
996.
997.
The diagnosis of mitochondrial disorders is difficult due to clinical and genetic heterogeneity. Measurements of mitochondrial respiratory chain (RC) enzyme activities are essential for both clinical diagnoses and many basic research questions. Current protocols for RC analysis are not standardized, and so are prone to inter-laboratory variability, and also to biochemical interferences that lead to analytical discrepancies. Moreover, knowledge of the analytical performances of these assays, which is essential to draw meaningful conclusions from the results, is lacking. To understand this variability and to propose possible solutions, we systematically investigated the effect of different homogenization protocols and chemical conditions on RC assays using muscle homogenates. We developed optimized protocols and a novel complex III method with improved sensitivity, precision, and linearity. These methods can be reliably performed on minute muscle samples with a single-wavelength spectrophotometer. Moreover, we measured the variability of the proposed homogenization protocol and we provide a systematic evaluation of each assay's specificity, precision, and linearity. These data will be useful for quality control in both clinical and research laboratories.  相似文献   
998.
999.
1000.
Loss or gain of chromosomes, a condition known as aneuploidy, is a common feature of tumor cells and has therefore been proposed as the driving force for tumorigenesis. Such chromosomal instability can arise during mitosis as a result of mis-segregation of the duplicated sister chromatids to the two daughter cells. In normal cells, missegregation is usually prevented by the spindle assembly checkpoint (SAC), a sophisticated surveillance mechanism that inhibits mitotic exit until all chromosomes have successfully achieved bipolar attachment to spindle microtubules. Complete abrogation of SAC activity is lethal to normal as well as to tumor cells, as a consequence of massive chromosome mis-segregation. Importantly, many human aneuploid tumor cells exhibit a weakened SAC activity that allows them to tolerate gains or losses of a small number of chromosomes; and interfering with this SAC residual activity may constitute a suitable strategy to kill cancer cells. This review focuses on the potential link between SAC and tumorigenesis, and the therapeutic strategy to target the SAC for cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号