首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2660篇
  免费   248篇
  2023年   7篇
  2022年   6篇
  2021年   58篇
  2020年   30篇
  2019年   36篇
  2018年   41篇
  2017年   29篇
  2016年   66篇
  2015年   124篇
  2014年   112篇
  2013年   171篇
  2012年   187篇
  2011年   199篇
  2010年   126篇
  2009年   120篇
  2008年   156篇
  2007年   175篇
  2006年   168篇
  2005年   160篇
  2004年   145篇
  2003年   179篇
  2002年   140篇
  2001年   33篇
  2000年   20篇
  1999年   34篇
  1998年   38篇
  1997年   19篇
  1996年   10篇
  1995年   24篇
  1994年   17篇
  1993年   11篇
  1992年   22篇
  1991年   14篇
  1990年   15篇
  1989年   13篇
  1988年   9篇
  1987年   15篇
  1986年   6篇
  1985年   10篇
  1984年   19篇
  1983年   17篇
  1982年   11篇
  1981年   12篇
  1980年   10篇
  1978年   12篇
  1977年   8篇
  1974年   6篇
  1973年   12篇
  1972年   8篇
  1971年   6篇
排序方式: 共有2908条查询结果,搜索用时 15 毫秒
81.
82.
83.
The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans.  相似文献   
84.
Mixed‐species exhibits offer a variety of benefits but can be challenging to maintain due to difficulty in managing interspecific interactions. This is particularly true when little has been documented on the behavior of the species being mixed. This was the case when we attempted to house three species of turaco (family: Musophagidae) together with other species in a walk‐through aviary. To learn more about the behavior of great blue turacos, violaceous turacos, and white‐bellied gray go‐away birds, we supplemented opportunistic keeper observations with systematic data collection on their behavior, location, distance from other birds, and visibility to visitors. Keepers reported high levels of aggression among turacos, usually initiated by a go‐away bird or a violaceous turaco. Most aggression occurred during feedings or when pairs were defending nest sites. Attempts to reduce aggression by temporarily removing birds to holding areas and reintroducing them days later were ineffective. Systematic data collection revealed increased social behavior, including aggression, during breeding season in the violaceous turacos, as well as greater location fidelity. These behavioral cues may be useful in predicting breeding behavior in the future. Ultimately, we were only able to house three species of turaco together for a short time, and prohibitively high levels of conflict occurred when pairs were breeding. We conclude that mixing these three turaco species is challenging and may not be the most appropriate housing situation for them, particularly during breeding season. However, changes in turaco species composition, sex composition, or exhibit design may result in more compatible mixed‐turaco species groups. Zoo Biol. 32:216–221, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
85.
Pipecolic acid naturally occurs in microorganisms, plants, and animals, where it plays many roles, including the interactions between these organisms, and is a key constituent of many natural and synthetic bioactive molecules. This article provides a review of current knowledge on the natural occurrence of pipecolic acid and the known and potential significance of its L‐ and D‐enantiomers in different scientific disciplines. Knowledge gaps with perspectives for future research identified within this article include the roles of the L‐ versus the D‐enantiomer of pipecolic acid in plant resistance, nutrient acquisition, and decontamination of polluted soils, as well as rhizosphere ecology and medical issues. Chirality 25:823–831, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
86.
87.
The immunoglobulin new antigen receptors (IgNARs) are a class of Ig-like molecules of the shark immune system that exist as heavy chain-only homodimers and bind antigens by their single domain variable regions (V-NARs). Following shark immunization and/or in vitro selection, V-NARs can be generated as soluble, stable, and specific high affinity monomeric binding proteins of ∼12 kDa. We have previously isolated a V-NAR from an immunized spiny dogfish shark, named E06, that binds specifically and with high affinity to human, mouse, and rat serum albumins. Humanization of E06 was carried out by converting over 60% of non-complementarity-determining region residues to those of a human germ line Vκ1 sequence, DPK9. The resulting huE06 molecules have largely retained the specificity and affinity of antigen binding of the parental V-NAR. Crystal structures of the shark E06 and its humanized variant (huE06 v1.1) in complex with human serum albumin (HSA) were determined at 3- and 2.3-Å resolution, respectively. The huE06 v1.1 molecule retained all but one amino acid residues involved in the binding site for HSA. Structural analysis of these V-NARs has revealed an unusual variable domain-antigen interaction. E06 interacts with HSA in an atypical mode that utilizes extensive framework contacts in addition to complementarity-determining regions that has not been seen previously in V-NARs. On the basis of the structure, the roles of various elements of the molecule are described with respect to antigen binding and V-NAR stability. This information broadens the general understanding of antigen recognition and provides a framework for further design and humanization of shark IgNARs.  相似文献   
88.
GABAB receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABAB receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABAB1a, GABAB1b, and GABAB2 form fully functional heteromeric GABAB(1a,2) and GABAB(1b,2) receptors. Principal subunits regulate forward trafficking of the receptors from the endoplasmic reticulum to the plasma membrane and control receptor distribution to axons and dendrites. The auxiliary subunits KCTD8, -12, -12b, and -16 are cytosolic proteins that influence agonist potency and G-protein signaling of GABAB(1a,2) and GABAB(1b,2) receptors. Here, we used transfected cells to study assembly, surface trafficking, and internalization of GABAB receptors in the presence of the KCTD12 subunit. Using bimolecular fluorescence complementation and metabolic labeling, we show that GABAB receptors associate with KCTD12 while they reside in the endoplasmic reticulum. Glycosylation experiments support that association with KCTD12 does not influence maturation of the receptor complex. Immunoprecipitation and bioluminescence resonance energy transfer experiments demonstrate that KCTD12 remains associated with the receptor during receptor activity and receptor internalization from the cell surface. We further show that KCTD12 reduces constitutive receptor internalization and thereby increases the magnitude of receptor signaling at the cell surface. Accordingly, knock-out or knockdown of KCTD12 in cultured hippocampal neurons reduces the magnitude of the GABAB receptor-mediated K+ current response. In summary, our experiments support that the up-regulation of functional GABAB receptors at the neuronal plasma membrane is an additional physiological role of the auxiliary subunit KCTD12.  相似文献   
89.
90.
To understand the genotypic variation of citrus to mild salt stress, a proteomic approach has been carried out in parallel on two citrus genotypes (‘Cleopatra’ and ‘Willow leaf’ mandarins), which differ for Na+ and Cl accumulation, and their cognate autotetraploids (4×). Using two-dimensional electrophoresis approximately 910 protein spots were reproducibly detected in control and salt-stressed leaves of all genotypes. Among them, 44 protein spots showing significant variations at least in one genotype were subjected to mass spectrometry analysis for identification. Salt-responsive proteins were involved in several functions, including photosynthetic processes, ROS scavenging, stress defence, and signalling. Genotype factors affect the salt-responsive pattern, especially that of carbon metabolism. The no ion accumulator ‘Cleopatra’ mandarin genotype showed the highest number of salt-responsive proteins, and up-regulation of Calvin cycle-related proteins. Conversely the ion accumulator ‘Willow leaf’ mandarin showed high levels of several photorespiration-related enzymes. A common set of proteins (twelve spots) displayed higher levels in salt-stressed leaves of 2× and 4× ‘Cleopatra’ and 4× ‘Willow leaf’ mandarin. Interestingly, antioxidant enzymes and heat shock proteins showed higher constitutive levels in 4× ‘Cleopatra’ mandarin and 4× ‘Willow leaf’ mandarin compared with the cognate 2× genotype. This work provides for the first time information on the effect of 8 weeks of salt stress on citrus genotypes contrasting for ion accumulation and their cognate autotetraploids. Results underline that genetic factors have a predominant effect on the salt response, although a common stress response independent from genotype was also found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号