首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
  国内免费   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2000年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1958年   4篇
  1955年   1篇
  1954年   1篇
  1953年   2篇
  1952年   1篇
  1951年   1篇
排序方式: 共有69条查询结果,搜索用时 140 毫秒
51.
We assessed the potential of using 14C contents of soil respired CO2 to calculate the contributions of heterotrophic and autotrophic respiration to total soil respiration. The partitioning of these fluxes is of utmost importance to evaluate implications of environmental change on soil carbon cycling and sequestration. At three girdled forest stands in Sweden and Germany, where the tree root (autotrophic) respiration had been eliminated, we measured both flux rates and 14C contents of soil respired CO2 in girdled and control plots in the summers of 2001 or 2002. At all stands, CO2 flux rates were slightly higher in the control plots, whereas the 14C contents of respired CO2 tended to be higher in the girdled plots. This was expected and confirmed that heterotrophically respired CO2 cycles more slowly through the forest ecosystem than autotrophically respired CO2. On the basis of these data, the contributions of hetero‐ and autotrophic respiration to total soil respiration were calculated using two separate approaches (i.e. based on flux rates or 14C). Fractions of heterotrophic respiration ranged from 53% to 87%. Values calculated by both approaches did not differ significantly from each other. Finally, we compared the 14C contents of soil respired CO2 in the girdled plots with the 14C contents of heterotrophically respired CO2 calculated by three different 14C models. None of the models matched the measured data sufficiently. In addition, we suspect that inherent effects of girdling may cause the 14C content of CO2 respired in the girdled plots to be lower than ‘true’ heterotrophically respired CO2 in an undisturbed plot. Nevertheless, we argue that measurements and modeling of 14C can be developed into a valuable tool for separating heterotrophic and autotrophic soil respiration (e.g. when girdling cannot be performed).  相似文献   
52.
Isolated medusa buds of Podocoryne carnea (Anthomedusa) caneither develop autonomously to functional medusae or transformto stolons and polyps. Up to stage 8 the percentage of transformaiioncan be idised 10 100% by repeated traumatization of the isolatedbuds. From stage 9 onwards, even traumatized buds always regeneratemedusae and never transform to polyps. At stage 8 the bud isdifferentiated, lacking only the swelling of the outer mesogleato become a normal medusa. A correlation between the swellingof this mesoglea and the decrease of the percentage of transformationto zero can be observed between stages 8 and 9. The presenceof a swollen mesoglea is not the only factor in stabilizingmedusa structures, since, despite removal of the mesoglea bythe dissociation method, aggregates of dissociated buds of stages7 and 8 always formed medusa structures and never transformedto stolons or polyps. Regeneration of the manubrium in adult Hydromedusae shows agraded distribution, being highest in the center of the umbrellaand decreasing rapidly towards the circular canal. The extentof manubrium regeneration is not influenced by the amount ofwound material or the components of the gastrovascular system.  相似文献   
53.
Function of DNA Polymerase III in DNA Replication   总被引:30,自引:0,他引:30  
RECENTLY an in vitro system for DNA replication has been described. This system could be divided into two fractions (A and B) both of which are necessary for proper DNA replication1. Fraction A, the “soluble” fraction, contains those proteins which do not tightly bind to membranes or native DNA. Fraction B, the “insoluble” fraction, consists of DNA and membranous structures and proteins which are bound to either of them. It was shown that the soluble fraction contains at least one component which is needed at about in vivo concentration1. Studies of one such component are described in the following.  相似文献   
54.
In the present study, we report an investigation on molecular variation in the endangered univoltine butterfly Euphydryas aurinia (Rottemburg, 1775), a species heavily affected by habitat degradation and fragmentation in Denmark. Levels of genetic variation in extant populations were estimated using six variable number tandem repeat loci and were found to be low compared to other butterfly species with low migration rates. An analysis of genetic structure, based on both allele frequencies and genotype distributions, divided the entire sample into four distinct clusters. This was partially concordant with the a priori subdivision based on collection areas. An overall FST value of 0.16 (pairwise values ranging from 0.087–0.276) indicated restrictions of gene flow. Especially two populations had higher FST values than the others, suggesting their isolation, and showed signs of bottlenecks/founder events. One population deviated significantly from Hardy–Weinberg equilibrium, suggesting a possible Wahlund effect or the presence of null alleles. The results suggest habitat fragmentation, resulting in genetic drift and possibly inbreeding. Future management is therefore recommended to increase gene flow between the remaining populations while habitats are restored in order to increase carrying capacity. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 677–687.  相似文献   
55.
56.
Human evolution has clearly been shaped by gene–culture interactions, and there is growing evidence that similar processes also act on populations of non‐human animals. Recent theoretical studies have shown that culture can be an important evolutionary mechanism because of the ability of cultural traits to spread rapidly both vertically, obliquely, and horizontally, resulting in decreased within‐group variance and increased between‐group variance. Here, we collate the extensive literature on population divergence in killer whales (Orcinus orca), and argue that they are undergoing ecological speciation as a result of dietary specializations. Although we cannot exclude the possibility that cultural divergence pre‐dates ecological divergence, we propose that cultural differences in the form of learned behaviours between ecologically divergent killer whale populations have resulted in sufficient reproductive isolation even in sympatry to lead to incipient speciation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 1–17.  相似文献   
57.
A new species of Nepenthes L., N. attenboroughii (Nepenthaceae), from Palawan Island in the Philippines, is described and illustrated. It is restricted to rocky, ultramafic soils that comprise the summit region of Mount Victoria, Municipality of Narra, where it occurs in isolation from other members of the genus. On the basis of the morphological features, this new taxon appears to be related to both N. mira Jebb & Cheek of Palawan and N. rajah Hook.f. of Borneo. Its substantial size places it among the largest of known pitcher plants. The diagnostic morphological characters are discussed and an updated key is provided for a revised complex of Nepenthes species from the Palawan and North Borneo phytogeographical region. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 195–202.  相似文献   
58.
Abstract Rapid cold hardening is a naturally occurring phenomenon in insects that is thought to be responsible for increased cold tolerance during diurnal variations in temperature. The underlying physiological mechanisms are still not fully resolved but, in Drosophila melanogaster (Meigen 1830), rapid cold hardening is accompanied by specific changes in the membrane lipid composition. To further understand the link between rapid cold hardening and adjustments in the membrane lipid composition, the present study investigates how different rates of cooling affect thermotolerance and the composition of phospholipid fatty acids. Female Drosophila are cooled gradually from 25 to 0 °C at 0.01, 0.05, 0.1 or 0.5 °C min?1, respectively, and, subsequently, phospholipid fatty acid composition and survival after a 1‐h cold shock at ?5 °C is measured. The rapid cold hardening treatments all influence cold tolerance differently so that short and intermediate rapid cold hardening treatments (0.05, 0.1 or 0.5 °C min?1 cooling rates) increase cold shock survival, whereas the slow cooling treatment (0.01 °C min?1) decreases survival relative to an untreated control. The intermediate rapid cold hardening treatments (0.05 or 0.1 °C min?1) induce a similar type of response characterized by an increase in the molar percentage of linoleic acid, 18:2(n‐6), at the expense of 16:0 and 18:1(n‐9), which leads to an increase in the degree of unsaturation. The slowest cooling treatment (0.01 °C min?1) results in a large increase in cis‐16:1(n‐7) and significant reductions in the saturated phospholipid fatty acids 16:0, 18:0 and the unsaturated 16:1(n‐9) and 18:2(n‐6) fatty acids. These changes cause a slight decrease in the average length of the phospholipid fatty acids and an increase in the overall ratio of unsaturated vs. saturated fatty acids. These findings demonstrate that the rate of cooling is important for both the reorganization of membrane lipids, and for the degree of acquired cold tolerance during rapid cold hardening, and they suggest an important role for rapid cold hardening during diurnal rather than seasonal temperature changes.  相似文献   
59.
1. Insects lack the acquired immune system of vertebrates, but there is some evidence that insect immunity can be primed against an encountered pathogen to mitigate the intensity of future infections within a life stage. 2. Many invertebrates have multiple life‐history stages separated by complete metamorphosis, but different life stages can often be infected by the same pathogens, and the potential loss of immune priming during metamorphosis could therefore have detrimental effects on the host. Evidence that invertebrate immune priming can persist through metamorphosis is still missing, and consequently it is unclear how host–parasite interactions change across different life‐history stages in the context of infection history. 3. By experimentally manipulating the infection history of the flour beetle Tribolium confusum, we show that intestinal gregarine parasite infections during the larval stage reduced parasite load in adults, demonstrating that a host‐controlled mechanism for parasite resistance can persist through complete metamorphosis in insects. 4. Infections reduced larval developmental rates and increased host mortality but only during the crucial metamorphic stage, indicating that parasites impact multiple life stages. In general, our results demonstrate that invertebrates can show surprisingly robust immune priming despite dramatic physiological changes and protect hosts across completely different life‐history stages.  相似文献   
60.
1. A predator's ability to suppress its prey depends on the level of interference among predators. While interference typically decreases with increasing habitat complexity, it often increases with increasing size differences among individuals. However, little is known about how variation in intrinsic factors such as population size structure alters predator–prey interactions and how this intrinsic variation interacts with extrinsic variation. 2. By experimentally varying the level of vegetation cover and the size structure of the predatory damselfly Ischnura posita Hagen, we examined the individual and interactive effects of variation in habitat complexity and predator size structure on prey mortality. 3. Copepod prey survival linearly increased as the I. posita size ratio decreased and differed by up to 31% among different predator size structures. Size classes had an additive effect on prey survival, most likely because intraspecific aggression appeared size‐independent and size classes differed in microhabitat preference: large I. posita spent 14% more time foraging on the floor than small larvae and spent more time in the vegetation with increasing habitat complexity. Despite this difference in microhabitat use among size classes, habitat structure did not influence predation rates or interference among size classes. 4. In general, results suggest that seasonal and spatial variation in the size structure of populations could drive some of the discrepancies in predator‐mediated prey suppression observed in nature, and this variation could exceed the effects of variation in habitat structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号