首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   77篇
  2021年   12篇
  2019年   8篇
  2018年   12篇
  2017年   18篇
  2016年   17篇
  2015年   34篇
  2014年   43篇
  2013年   59篇
  2012年   55篇
  2011年   52篇
  2010年   44篇
  2009年   31篇
  2008年   63篇
  2007年   68篇
  2006年   62篇
  2005年   53篇
  2004年   39篇
  2003年   34篇
  2002年   43篇
  2001年   21篇
  2000年   21篇
  1999年   25篇
  1998年   18篇
  1997年   14篇
  1996年   6篇
  1995年   10篇
  1994年   8篇
  1993年   10篇
  1992年   15篇
  1991年   13篇
  1990年   12篇
  1989年   8篇
  1988年   14篇
  1987年   5篇
  1986年   5篇
  1985年   13篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1972年   5篇
  1970年   4篇
  1968年   5篇
  1967年   6篇
  1965年   5篇
排序方式: 共有1079条查询结果,搜索用时 31 毫秒
31.
Metabolomics as one of the most rapidly growing technologies in the “-omics” field denotes the comprehensive analysis of low molecular-weight compounds and their pathways. Cancer-specific alterations of the metabolome can be detected by high-throughput mass-spectrometric metabolite profiling and serve as a considerable source of new markers for the early differentiation of malignant diseases as well as their distinction from benign states. However, a comprehensive framework for the statistical evaluation of marker panels in a multi-class setting has not yet been established. We collected serum samples of 40 pancreatic carcinoma patients, 40 controls, and 23 pancreatitis patients according to standard protocols and generated amino acid profiles by routine mass-spectrometry. In an intrinsic three-class bioinformatic approach we compared these profiles, evaluated their selectivity and computed multi-marker panels combined with the conventional tumor marker CA 19-9. Additionally, we tested for non-inferiority and superiority to determine the diagnostic surplus value of our multi-metabolite marker panels. Compared to CA 19-9 alone, the combined amino acid-based metabolite panel had a superior selectivity for the discrimination of healthy controls, pancreatitis, and pancreatic carcinoma patients $ [ {\text{volume under ROC surface}}\;\left( {\text{VUS}} \right) = 0. 8 9 1 { }\left( { 9 5\,\% {\text{ CI }}0. 7 9 4- 0. 9 6 8} \right)]. $ We combined highly standardized samples, a three-class study design, a high-throughput mass-spectrometric technique, and a comprehensive bioinformatic framework to identify metabolite panels selective for all three groups in a single approach. Our results suggest that metabolomic profiling necessitates appropriate evaluation strategies and—despite all its current limitations—can deliver marker panels with high selectivity even in multi-class settings.  相似文献   
32.
Humans have substantially altered the nitrogen cycle of ecosystems through the application of agricultural fertilizer. Fertilization may not only affect plant species diversity, but also insect dynamics by altering plant nitrogen supplies. We investigated the effect of experimental fertilization on the vegetation, with the ribwort plantain as the focal plant, and on higher trophic levels on differently managed grasslands throughout Germany. Over a period of 2 years, we examined two specialist herbivores and their parasitoid on Plantago lanceolata L., and the composition and structure of the surrounding vegetation. Over 70 sites in three geographic regions, within the large-scale project “German Biodiversity Exploratories”, were included in the study. The model system consisted of the host plant P. lanceolata L., the monophagous weevils Mecinus labilis Herbst and M. pascuorum Gyllenhal, and their parasitoid Mesopolobus incultus Walker. Fertilization decreased plant species richness and host plant abundance, whereas it enhanced the total vegetation growth. The increased size and heigher leaf nitrogen content did not improve herbivore performance. On the contrary, the abundance of the two herbivores was decreased by fertilization. The parasitoid depended on the abundance of one of its hosts, M. pascuorum (positively density-dependent). Reduced herbivore abundance due to fertilization might be explained by a lower abundance of the host plant, a lower stalk number, and by changed patterns of host localization within higher vegetation. Fertilization negatively affected the third trophic level by cascading up via host abundance. The relationships between fertilization, surrounding vegetation and the tritrophic system were measured throughout the three regions and over the 2-year period. Our findings present consequences of intensification for a plant–herbivore–parasitoid system, and may have significant implications for the conservation of multitrophic systems in managed grasslands.  相似文献   
33.

Aims

Our aims were to characterize the fate of leaf-litter-derived nitrogen in the plant-soil-microbe system of a temperate beech forest of Southern Germany and to identify its importance for N nutrition of beech seedlings.

Methods

15N-labelled leaf litter was traced in situ into abiotic and biotic N pools in mineral soil as well as into beech seedlings and mycorrhizal root tips over three growing seasons.

Results

There was a rapid transfer of 15N into the mineral soil already 21 days after tracer application with soil microbial biomass initially representing the dominant litter-N sink. However, 15N recovery in non-extractable soil N pools strongly increased over time and subsequently became the dominant 15N sink. Recovery in plant biomass accounted for only 0.025 % of 15N excess after 876 days. After three growing seasons, 15N excess recovery was characterized by the following sequence: non-extractable soil N?>>?extractable soil N including microbial biomass?>>?plant biomass?>?ectomycorrhizal root tips.

Conclusions

After quick vertical dislocation and cycling through microbial N pools, there was a rapid stabilization of leaf-litter-derived N in non-extractable N pools of the mineral soil. Very low 15N recovery in beech seedlings suggests a high importance of other N sources such as root litter for N nutrition of beech understorey.  相似文献   
34.
The decoupling of the retention time of easily degradable and persistent substances relieves the degradation process from inhibitors and increases the biogas yield. Anaerobic digestion of maize silage was investigated in a pilot‐scale plant with a coupled ultrafiltration membrane. The aim of the study was the evaluation of the influence of the membrane‐based relief of the degradation process and the increase of the retention time of persistent substances. For that purpose, the fermenter content was separated into solid and liquid fractions. The solid fraction was recirculated to the fermenter for longer retention time and higher substrate degradation rates. The fermentation process was improved by the removal of the liquid fraction and adding volatile fatty acids. The results showed an increase of the biogas yield by 7.2% in comparison to the anaerobic digestion without membrane filtration.  相似文献   
35.
36.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   
37.
Temperature is one of the most important ecological factors affecting species survival and distributions. Therefore, global climate change, involving increases in mean surface temperature and the occurrence of extreme weather events, may pose a substantial challenge to biodiversity. Whereas tropical ectotherms are believed to be very sensitive to climate change, temperate‐zone species may actually benefit from higher temperatures. However, as in temperate zones large parts of the year are unsuitable for growth and reproduction, seasonal time constraints may complicate matters. Against this background we here investigate the impact of simulated climate change, involving increased mean temperatures and heat waves, across developmental pathways of the butterfly Lycaena tityrus (Poda) (Lepidoptera: Lycaenidae). Increased temperatures speeded up development but decreased pupal mass as expected. However, we found no evidence for detrimental effects of increased temperatures or even simulated heat waves. Furthermore, patterns did not differ between indirectly and directly developing individuals, which are assumed to be more time constrained. Our findings support the notion that not all species will be detrimentally affected by climate change, and suggest that species attributes may be more important than potential time constraints imposed by different developmental pathways.  相似文献   
38.
39.
The amyloid precursor protein (APP) and its pathogenic by-product amyloid-beta protein (Abeta) play central roles in Alzheimer disease (AD) neuropathogenesis. APP can be cleaved by beta-secretase (BACE) and alpha-secretase to produce APP-C99 and APP-C83. These C-terminal fragments can then be cleaved by gamma-secretase to produce Abeta and p3, respectively. p3 has been reported to promote apoptosis, and Abeta is the key component of senile plaques in AD brain. APP adaptor proteins with phosphotyrosine-binding domains, including ShcA (SHC1), ShcC (SHC3), and Fe65 (APBB1), can bind to and interact with the conserved YENPTY motif in the APP-C terminus. Here we have described for the first time the effects of RNA interference (RNAi) silencing of ShcA, ShcC, and Fe65 expression on APP processing and Abeta production. RNAi silencing of ShcC led to reductions in the levels of APP-C-terminal fragments (APP-CTFs) and Abeta in H4 human neuroglioma cells stably overexpressing full-length APP (H4-FL-APP cells) but not in those expressing APP-C99 (H4-APP-C99 cells). RNAi silencing of ShcC also led to reductions in BACE levels in H4-FL-APP cells. In contrast, RNAi silencing of the homologue ShcA had no effect on APP processing or Abeta levels. RNAi silencing of Fe65 increased APP-CTF levels, although also decreasing Abeta levels in H4-FL-APP cells. These findings suggest that pharmacologically blocking interaction of APP with ShcC and Fe65 may provide novel therapeutic strategies against AD.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号