首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2006年   1篇
  2005年   3篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
排序方式: 共有38条查询结果,搜索用时 13 毫秒
31.
Two approaches to bioremediation of oil-polluted soils are compared: use of active degrader strain Dietzia maris AM3 and stimulation of natural microflora. Introduction of D. maris AM3 to soil freshly polluted with oil accelerated its remediation twofold within the first month in comparison with the stimulation. After three months, the purification degrees were approximately equal. By the end of bioremediation, the soil with the introduced strain had higher dehydrogenase and catalase activities. In soil with aged pollution, introduced strain D. maris AM3 did not affect the rate of oil product degradation, and no significant differences between the two bioremediation methods were detected in purification degree and biological activity of soil after three months.  相似文献   
32.
A Biosurfactant-Producing Pseudomonas aeruginosa Strain   总被引:3,自引:0,他引:3  
A Pseudomonas aeruginosa strain producing an extracellular surfactant (biosurfactant) was isolated. The growth of this strain, referred to as 50.3, on a mineral glycerol-containing medium produces an emulsifying activity (60%) and decreases the surface tension of the culture liquid by a factor of 2.8 (to 25 mN/m). The optimum conditions for its growth and production of biosurfactants are intense aeration, pH 7.0–8.0, and the presence of Mg2+. The optimum biosurfactant properties were achieved when glucose was used as the only source of carbon and energy and NH4Cl was used as a source of nitrogen. The biosurfactant was isolated from the culture liquid by extraction and precipitation.  相似文献   
33.
The effect of cultivation conditions on chrysene bioconversion by the fungus Pleurotus ostreatus D1 was shown. Under the laccase production conditions, transformation of this polycyclic aromatic hydrocarbon occurs with accumulation of the quinone metabolite. Under both the laccase and versatile peroxidase production conditions, chrysene degradation occurs, with the stages leading to phthalic acid formation and its further utilization. The formation of phthalic acid as a metabolite of chrysene degradation by white rot fungi was revealed for the first time. The data obtained suggest that the laccase revealed on the mycelial surface and the extracellular laccase are probably involved at the initial stages of chrysene metabolism, whereas versatile peroxidase seems to be required for oxidizing the metabolites formed.  相似文献   
34.
Physiological, biochemical, and growth parameters of sorghum (Sorghum bicolor (L.) Moench) plants grown in the presence of phenantrene (10 and 100 mg/kg soil) were examined. Activities of intracellular tyrosinases, peroxidases, and laccase-like oxidases were analyzed in 1 and 2 months after planting. The tyrosinase activity in root and leaf tissues correlated positively throughout the experiment with the level of soil pollution. The oxidase activity was apparent only in the first month; it also correlated positively with the concentration of phenanthrene. Intracellular peroxidases exhibited the highest activity; positive correlation of this activity with the level of soil contamination was observed in the first period of observations. The soil pollutant had a negative impact on growth characteristics (germination capacity, survival rate, and accumulation of plant biomass). In addition, soil contamination with phenanthrene reduced the total content of photosynthetic pigments and changed their ratio. The maximum extent of phenanthrene elimination in soil was found to occur in the root zone of sorghum plants at high-level contamination, which indicates a significant contribution of plants to the decomposition (binding) of this xenobiotic.  相似文献   
35.
For the first time the dependence of completeness of pyrene degradation by the white-rot fungus Pleurotus ostreatus D1 on cultivation conditions was found. In Kirk’s medium about 65.6 ± 0.9% of the initial pyrene was metabolized after 3 weeks, with pyrene-4,5-dihydrodiol accumulating. This process was accompanied by laccase production only. In basidiomycetes rich medium, P. ostreatus D1 metabolized up to 89.8 ± 2.3% of pyrene within 3 weeks without pyrene-4,5-dihydrodiol accumulation throughout the time of cultivation. Phenanthrene and phthalic acid were identified as the metabolites produced from pyrene degradation under these conditions. Accumulation of phenanthrene with its subsequent disappearance was observed. One more metabolite probably was the product of phenanthrene degradation. Pyrene metabolism in basidiomycetes rich medium was accompanied first by laccase and tyrosinase production and later by versatile peroxidase production. The cell-associated activities of laccase, tyrosinase, and versatile peroxidase were found. The data obtained indicate that both enzymes (laccase and versatile peroxidase) are necessary for complete degradation of pyrene. Furthermore, both cell-associated and extracellular laccases can catalyse the first stages of pyrene degradation, and versatile peroxidase can be necessary for oxidation of the resulting metabolites.  相似文献   
36.
Protein biosynthesis machinery is thought to be mostly compartmentalised within the mammalian cell, involving direct interactions between different components of the translation apparatus. The present research concerns the functional meaning of the interaction between the rabbit liver aminoacyl-tRNA synthetases and 80S ribosomes. We have shown that rabbit liver 80S ribosomes are able to enhance the activity of leucyl-tRNA synthetase, which is a component of high-molecular weight aminoacyl-tRNA synthetase complex, and phenylalanyl-tRNA synthetase not associated within this complex. The ribosomes increase the initial rate of both the total reaction of tRNA aminoacylation and the first step of this reaction, the formation of leucyladenylate. Moreover, a positive cooperativity of the tRNA interaction with two binding sites of leucyl-tRNA synthetase is also increased in the presence of highly purified 80S ribosomes. The effect of 80S ribosomes on partly denatured leucyl-tRNA synthetase and phenylalanyl-tRNA synthetase and the protection by 80S ribosomes of both enzymes against inactivation indicate a refolding and stabilising capacity of the ribosomes. It is concluded that the interaction of aminoacyl-tRNA synthetases and 80S ribosomes is important for the maintenance of an active conformation of the enzymes.  相似文献   
37.
38.
The aim of this research was to select plant species that could be effective in the phytoremediation of a former oil-sludge pit. Seven crop plants (Triticum aestivum L., Secale cereale L., Avena sativa L., Hordeum vulgare, Sorghum bicolor L. Moench, Panicum miliaceum L., and Zea mays L.), five wild grasses (Lolium perenne L., Bromopsis inermis, Agropyron cristatum L., Agropyrum tenerum L., and Festuca pratensis Huds.), and three legumes (Medicago sativa L., Trifolium pratense L., and Onobrychis antasiatica Khin.) were screened for phytotoxicity, including the assessment of germination, shoot biomass, and root biomass, in a pot experiment. The estimation of oil-sludge degradation in the root zone of the tested plants showed that rye accelerated cleanup most effectively, degrading all of the main contaminant fractions in the oil sludge by a total of 52%. Although alfalfa had a lower phytoremediation potential than did rye, it maintained large numbers of soil microorganisms, including polycyclic aromatic hydrocarbon degraders, in its rhizosphere. Rye and alfalfa were chosen for a large-scale study to remediate an oil-sludge pit on the grounds of a petroleum refinery. Remediation monitoring confirmed the effectiveness of rye: the oil-sludge content decreased consistently for 3 years and remained low in comparison with the results from other plant species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号