首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1692篇
  免费   59篇
  国内免费   1篇
  2023年   5篇
  2022年   3篇
  2021年   13篇
  2020年   9篇
  2019年   26篇
  2018年   20篇
  2017年   14篇
  2016年   20篇
  2015年   51篇
  2014年   47篇
  2013年   103篇
  2012年   70篇
  2011年   90篇
  2010年   70篇
  2009年   58篇
  2008年   99篇
  2007年   106篇
  2006年   103篇
  2005年   107篇
  2004年   119篇
  2003年   114篇
  2002年   125篇
  2001年   23篇
  2000年   20篇
  1999年   28篇
  1998年   28篇
  1997年   24篇
  1996年   27篇
  1995年   27篇
  1994年   28篇
  1993年   15篇
  1992年   9篇
  1991年   6篇
  1990年   13篇
  1989年   15篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   8篇
  1984年   14篇
  1983年   8篇
  1982年   11篇
  1981年   11篇
  1980年   9篇
  1978年   6篇
  1977年   7篇
  1976年   4篇
  1974年   2篇
  1967年   2篇
  1961年   2篇
排序方式: 共有1752条查询结果,搜索用时 15 毫秒
111.
The expression of genes involved in methanogenesis in a thermophilic hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain TM, was investigated both in a pure culture sufficiently supplied with H(2) plus CO(2) and in a coculture with an acetate-oxidizing hydrogen-producing bacterium, Thermacetogenium phaeum strain PB, in which hydrogen partial pressure was constantly kept very low (20 to 80 Pa). Northern blot analysis indicated that only the mcr gene, which encodes methyl coenzyme M reductase I (MRI), catalyzing the final step of methanogenesis, was expressed in the coculture, whereas mcr and mrt, which encodes methyl coenzyme M reductase II (MRII), the isofunctional enzyme of MRI, were expressed at the early to late stage of growth in the pure culture. In contrast to these two genes, two isofunctional genes (mtd and mth) for N(5),N(10)-methylene-tetrahydromethanopterin dehydrogenase, which catalyzes the fourth step of methanogenesis, and two hydrogenase genes (frh and mvh) were expressed both in a pure culture and in a coculture at the early and late stages of growth. The same expression pattern was observed for Methanothermobacter thermoautotrophicus strain DeltaH cocultured with a thermophilic butyrate-oxidizing syntroph, Syntrophothermus lipocalidus strain TGB-C1. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole proteins of M. thermoautotrophicus strain TM obtained from a pure culture and a coculture with the acetate-oxidizing syntroph and subsequent N-terminal amino acid sequence analysis confirmed that MRI and MRII were produced in the pure culture, while only MRI was produced in the coculture. These results indicate that under syntrophic growth conditions, the methanogen preferentially utilizes MRI but not MRII. Considering that hydrogenotrophic methanogens are strictly dependent for growth on hydrogen-producing fermentative microbes in the natural environment and that the hydrogen supply occurs constantly at very low concentrations compared with the supply in pure cultures in the laboratory, the results suggest that MRI is an enzyme primarily functioning in natural methanogenic ecosystems.  相似文献   
112.
To investigate the immunogenic property of peptides derived from the synovial sarcoma-specific SYT-SSX fusion gene, we synthesized four peptides according to the binding motif for HLA-A24. The peptides, SS391 (PYGYDQIMPK) and SS393 (GYDQIMPKK), were derived from the breakpoint of SYT-SSX, and SS449a (AWTHRLRER) and SS449b (AWTHRLRERK) were from the SSX region. These peptides were tested for their reactivity with CTL precursors (CTLps) in 16 synovial sarcoma patients using HLA-A24/SYT-SSX peptide tetramers and also for induction of specific CTLs from four HLA-A24(+) synovial sarcoma patients. Tetramer analysis indicated that the increased CTLp frequency to the SYT-SSX was associated with pulmonary metastasis in synovial sarcoma patients (p < 0.03). CTLs were induced from PBLs of two synovial sarcoma patients using the peptide mixture of SS391 and SS393, which lysed HLA-A24(+) synovial sarcoma cells expressing SYT-SSX as well as the peptide-pulsed target cells in an HLA class I-restricted manner. These findings suggest that aberrantly expressed SYT-SSX gene products have primed SYT-SSX-specific CTLps in vivo and increased their frequency in synovial sarcoma patients. The identification of SYT-SSX peptides may offer an opportunity to design peptide-based immunotherapeutic approaches for HLA-A24(+) patients with synovial sarcoma.  相似文献   
113.
Nicotine treatment triggers calcium influx into neuronal cells, which promotes cell survival in a number of neuronal cells. Phosphoinositide (PI) 3-kinase and downstream PI3-kinase target Akt have been reported to be important in the calcium-mediated promotion of survival in a wide variety of cells. We investigated the mechanisms of nicotine-induced phosphorylation of Akt in PC12h cells, in comparison with nicotine-induced ERK phosphorylation. Nicotine induced Akt phosphorylation in a dose-dependent manner. A nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitor had no significant effect on nicotine-induced Akt phosphorylation, while a non-selective nAChR antagonist inhibited the phosphorylation. L-type voltage-sensitive calcium channel (VSCC) antagonists, calmodulin antagonist, and Ca2+/calmudulin-dependent protein kinase (CaM kinase) inhibitor prevented the nicotine-induced Akt phosphorylation. Three epidermal growth factor receptor (EGFR) inhibitors prevented the nicotine-induced phosphorylation of both extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and Akt. In contrast, an inhibitor of the Src family tyrosine kinase prevented the nicotine-induced Akt phosphorylation but not ERK phosphorylation. These results suggested that nicotine induces the activation of both PI3-kinase/Akt and ERK pathways via common pathways including non-alpha7-nAChRs, L-type VSCC, CaM kinase II and EGFR in PC12h cells, but Src family tyrosine kinases only participate in the pathway to activate Akt.  相似文献   
114.
We previously showed that a dissociated form of a low-molecular-weight heat shock-related protein 20 (HSP20) but not an aggregated form of HSP20 suppresses platelet aggregation. In the present study, we investigated the behavior of HSP20 in response to endothelial injury and the possible mechanism of HSP20 in platelet functions. The levels of HSP20 in vessel wall after endothelial injury were markedly reduced. This observation was supported by the results of Western blotting analysis and immunohistochemical analysis. Additionally, the plasma levels of HSP20 in cardiomyopathic hamsters were markedly elevated. Centrifugation on sucrose density gradients allowed detection mainly of the dissociated form of plasma HSP20 in these hamsters. Human platelets showed specific binding sites for HSP20. Moreover, HSP20 markedly reduced thrombin-induced phosphoinositide hydrolysis by phospholipase C in human platelets. Taken together, our results strongly suggest that HSP20, which immediately responds to pathological events, acts extracellularly as a regulator of platelet functions.  相似文献   
115.
Yoshimura M  Nakano Y  Fukamachi H  Koga T 《FEBS letters》2002,523(1-3):119-122
The antibacterial agent 3-chloro-DL-alanine (3CA) is an inhibitor of peptidoglycan synthesis. Fusobacterium nucleatum and Porphyromonas gingivalis, the bacteria responsible for oral malodor, are shown to be resistant to 1 mM 3CA, whereas Streptococcus mutans and Escherichia coli are sensitive to this antibacterial agent at the same concentration. We isolated the 3CA resistance gene from F. nucleatum and showed that the gene encodes an L-methionine-alpha-deamino-gamma-mercaptomethane-lyase that catalyzes the alpha,gamma-elimination of L-methionine to produce methyl mercaptan. The enzyme also exhibits 3CA chloride-lyase (deaminating) activity. This antibacterial agent is expected to be useful for specific selection of malodorous oral bacteria producing high amounts of methyl mercaptan.  相似文献   
116.
Characterization of the phosphoinositide 3-kinase-signaling pathway in a human renal tubular epithelial cell (TEC) line HKC-8 revealed high levels of Akt phosphorylation in serum-starved cultures. In contrast to Erk1/2, little additional phosphorylation of Akt was observed after cytokine or serum stimulation. Replacement of the conditioned medium attenuated Akt phosphorylation such that 90 min after the addition of warmed serum-free media, Akt phosphorylation had fallen sufficiently to allow an epidermal growth factor-stimulated increase to be detected readily. Although the mechanism by which the phosphoinositide 3-kinase/Akt pathway is activated in serum-starved TEC is unknown, the mediator responsible is secreted from these cells. Thus, conditioned media removed from a dish of quiescent TECs stimulated Akt phosphorylation in washed TEC cultures within 10 min. Biochemical characterization of the bioactive agent identified a heat labile factor of small apparent molecular mass. The basal level of Akt phosphorylation observed in serum-starved cultures was inhibited by wortmannin at concentrations that demonstrated its dependence on 3-phosphoinositide synthesis (IC(50) = 8 nm). Regular removal of conditioned media from TEC cultures and its replacement with serum free media resulted in a sustained attenuation of Akt phosphorylation. Interestingly, after 5 days of this treatment, washed TEC cultures contained a greater number of viable cells than cultures maintained in conditioned media throughout. This observation was not explained by a difference in the rate of DNA synthesis. Instead, the number of cells undergoing apoptosis increased markedly in the unwashed cultures. Consequently, we propose that in HKC-8 cells Akt phosphorylation is up-regulated in an effort to minimize cell death. This stress-activated response is initiated by a factor secreted into the conditioned medium that stimulates the phosphoinositide 3-kinase signaling pathway.  相似文献   
117.
We have shown recently that phosphoinositide 3-kinase (PI 3-kinase) accelerates the hypoxia-induced necrotic cell death of H9c2, derived from rat cardiomyocytes, by enhancing metabolic acidosis. Here we show the downstream events of acidosis that cause hypoxic cell death. Hypoxia induces the proteolysis of fodrin, a substrate of calpain. Intracellular Ca(2+) chelation by BAPTA, and the addition of SJA6017, a specific peptide inhibitor of calpain, also reduces cell death and fodrin proteolysis, indicating that Ca(2+) influx and calpain activation might be involved in these events. The overexpression of wild type PI 3-kinase accelerates fodrin proteolysis, while dominant-negative PI 3-kinase reduces it. Both (N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na(+)/H(+) exchanger, and KB-R7943, an inhibitor of the Na(+)/Ca(2+) exchanger, reduce hypoxic cell death and fodrin proteolysis. The depletion of intracellular Ca(2+ )stores by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase, also reduces cell death and fodrin proteolysis, indicating that Ca(2+ )release from intracellular Ca(2+ )stores might be also involved. These results indicate that PI 3-kinase might accelerate hypoxic cell death by enhancing the calpain-dependent proteolysis of fodrin.  相似文献   
118.
Light-activation of the PAS domain protein photoactive yellow protein (PYP) is believed to trigger a negative phototactic response in the phototropic bacterium Halorhodospira halophila. To investigate transient conformational changes of the PYP photocycle, we utilized the PYP mutant M100L that displays an increased lifetime of the putative signaling-state photointermediate PYP(M) by 3 orders of magnitude, as previously reported for the M100A mutant [Devanathan, S., Genick, U. K., Canestrelli, I. L., Meyer, T. E., Cusanovich, M. A., Getzoff, E. D., and Tollin, G. Biochemistry (1998) 37, 11563-11568]. The FTIR difference spectrum of PYP(M) and the ground state of M100L demonstrated extensive peptide-backbone structural changes as observed in the FTIR difference spectrum of the wild-type protein and PYP(M). The conformational change investigated by CD spectroscopy in the far-UV region showed reduction of the alpha-helical content by approximately 40%, indicating a considerable amount of changes in the secondary structure. The optical activity of the p-coumaric acid chromophore completely vanished upon PYP(M) in contrast to the dark state, indicating deformation of the binding pocket structure in PYP(M). The tertiary structural changes were further monitored by small-angle X-ray scattering measurements, which demonstrated a significant increase of the radius of gyration of the molecule by approximately 5% in PYP(M). These structural changes were reversed concomitantly with the chromophore anionization upon the dark state recovery. The observed changes of the quantities provided a more vivid view of the structural changes of the mutant PYP in going from PYP(M) to PYP(dark), which can be regarded as a process of folding of the secondary and the tertiary structures of the "PAS" domain structure, coupled with the p-coumaric acid chromophore deprotonation and isomerization.  相似文献   
119.
We previously reported that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblast-like MC3T3-E1 cells and that mitogen-activated protein (MAP) kinases are involved in bone morphogenetic protein (BMP)-4-stimulated osteocalcin synthesis in these cells. In the present study, we investigated whether sphingomyelinase affects BMP-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. Sphingomyelinase significantly enhanced the BMP-4-stimulated osteocalcin synthesis. Among sphingomyelin metabolites, C(2)-ceramide enhanced the BMP-4-stimulated osteocalcin synthesis while sphingosine and sphingosine 1-phosphate had little effect on the synthesis. D-erythro-MAPP, an inhibitor of ceramidase, amplified the sphingomyelinase-effect on the osteocalcin synthesis. C(2)-ceramide suppressed the BMP-4-induced phosphorylation of p44/p42 MAP kinase, while having little effect on the phosphorylation of Smad1 and p38 MAP kinase. Taken together, our results strongly suggest that extracellular sphingomyelinase enhances the BMP-stimulated osteocalcin synthesis via ceramide in osteoblasts and that the effect of ceramide is exerted at a point upstream from p44/p42 MAP kinase.  相似文献   
120.
To investigate the structural importance of a "disulfide zipper" motif of carboxypeptidase Y, disulfide-deficient mutant enzymes were expressed in two strains of Saccharomyces cerevisiae. The mutant enzymes were rapidly degraded into fragments by intracellular proteases. Thus, it is concluded that the disulfide zipper is essential in maintaining the structural integrity of CPase Y against proteolytic susceptibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号