首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   635篇
  免费   51篇
  国内免费   1篇
  2022年   3篇
  2021年   13篇
  2020年   2篇
  2019年   3篇
  2018年   12篇
  2017年   2篇
  2016年   16篇
  2015年   23篇
  2014年   21篇
  2013年   40篇
  2012年   45篇
  2011年   37篇
  2010年   38篇
  2009年   26篇
  2008年   35篇
  2007年   32篇
  2006年   35篇
  2005年   38篇
  2004年   33篇
  2003年   31篇
  2002年   27篇
  2001年   10篇
  2000年   22篇
  1999年   16篇
  1998年   10篇
  1997年   11篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1985年   3篇
  1984年   9篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1965年   1篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
71.
72.
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.  相似文献   
73.
The third-stage larvae of Anisakis simplex sensu lato (s.l.) are found in many marine fishes. To ensure food safety, it is important to determine whether these larvae are present in the body muscle of commercial fish species. However, there is little information regarding the tissue specificity of Anisakis and two of its sibling species, A. simplex sensu stricto (s.s.) and Anisakis pegreffii, that are common in marine fish in Japanese waters. We orally challenged rainbow trout (Oncorhynchus mykiss (Walbaum)), and olive flounder (Paralichthys olivaceus (Temminck and Schlegel)) with L3 larvae of these two sibling species and monitored infection for 5weeks. In rainbow trout, A. simplex s.s., but not A. pegreffii larvae, migrated into the body muscle. A small number of freely moving A. pegreffii larvae were recovered within the body cavity. In olive flounder, A. simplex s.s. larvae were found in both the body cavity and body muscle. A. pegreffii larvae were found only in the body cavity and primarily encapsulated in lumps. Our results indicate that there are differences in the sites of infection and host specificity between the two sibling species of A. simplex s.l.  相似文献   
74.
75.
Ion mobility MS was employed to study the structure of the βB2B3-crystallin heterodimer following its detection by ESI-TOF MS. The results demonstrate that the heterodimer has a similar cross-section (3 165 ?(2)) and structure to the βB2B2-crystallin homodimer. Several homology-modelled structures for the βB2B3 heterodimer were constructed and assessed in terms of their calculated collision cross-sections and whether the solvent accessibilities of reactive amino acid side chains throughout the βB3 subunit are in accord with measured oxidation levels in radical probe MS protein footprinting experiments. The βB2B3 heterodimer AD model provides the best representation of the heterodimer's structure overall following a consideration of both the ion mobility and radical probe MS data.  相似文献   
76.
Comprehensive research to quantify the deformability of erythrocytes in diabetic animals and humans has been lacking. The objective of this study was to compare the impairment of erythrocyte deformability in diabetic rats and patients by use of the same rheologic method. Deformability was investigated in streptozotocin-induced diabetic rats and diabetic patients, by using the highly sensitive and quantitative nickel-mesh-filtration technique. Erythrocyte filterability (whole-cell deformability) was defined as flow rate of hematocrit-adjusted erythrocyte suspension relative to that of saline (%). Hematological and biochemical data for diabetic rats did not differ from those for age-matched control rats except for hyperglycemia and malnutrition. Erythrocyte filterability for diabetic rats was significantly lower than that for control rats (69.4 ± 10.1%, n = 8, compared with 83.1 ± 4.2%, n = 8; p < 0.001). Likewise, erythrocyte filterability for diabetic patients was significantly impaired compared with that for controls (87.6 ± 3.4%, n = 174, compared with 88.6 ± 2.1%, n = 51; p = 0.046). Stepwise multiple regression analysis revealed that this impairment was mostly attributable to associated obesity (BMI, p = 0.029) and glycemic stress (HbA1c(JDS), p = 0.046). We therefore conclude that erythrocyte filterability is commonly impaired in diabetic rats and in humans. Moreover, metabolic risk accumulation further impairs erythrocyte filterability, resulting in derangement of the microcirculation.  相似文献   
77.
The catalysis of cytochrome P450s requires two-electron donation for the activation of an oxygen molecule. Here, we report the enzymatic catalysis of cytochrome P450, CYP119A2 (P450st), from a thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7, with NAD(P)H as an electron donor and no redox partners and the crystallographic analysis of P450st at high resolution. P450st can catalyse styrene epoxidation with either NADH or NADPH as an electron donor. The P450st reaction with NADH exhibited a sequential mechanism. X-ray crystallography at a resolution of 1.94 ? revealed a sufficiently large heme pocket for NAD(P)H binding and a novel contiguous channel from the active site to bulk solvent in the distal heme pocket. The narrow channel may transfer protons or water to the heme pocket even when a bulky compound, such as NAD(P)H, binds in the pocket. In addition, the F/G loop region (Leu151-Glu156), located around the substrate channel, was deleted in the mutant and constructed to improve the accessibility of NAD(P)H to the heme pocket. Kinetic properties of the Δ151-156 mutant were compared with those of the wild-type P450st. The K(m) value of the mutant was about 2 times lower than that of the wild-type. The results indicated that NAD(P)H could provide the electrons for P450st within the heme pocket.  相似文献   
78.
79.
Akashi T  Aoki T  Ayabe S 《Plant physiology》2005,137(3):882-891
Isoflavonoids are ecophysiologically active secondary metabolites of the Leguminosae and known for health-promoting phytoestrogenic functions. Isoflavones are synthesized by 1,2-elimination of water from 2-hydroxyisoflavanones, the first intermediate with the isoflavonoid skeleton, but details of this dehydration have been unclear. We screened the extracts of repeatedly fractionated Escherichia coli expressing a Glycyrrhiza echinata cDNA library for the activity to convert a radiolabeled precursor into formononetin (7-hydroxy-4'-methoxyisoflavone), and a clone of 2-hydroxyisoflavanone dehydratase (HID) was isolated. Another HID cDNA was cloned from soybean (Glycine max), based on the sequence information in its expressed sequence tag library. Kinetic studies revealed that G. echinata HID is specific to 2,7-dihydroxy-4'-methoxyisoflavanone, while soybean HID has broader specificity to both 4'-hydroxylated and 4'-methoxylated 2-hydroxyisoflavanones, reflecting the structures of isoflavones contained in each plant species. Strikingly, HID proteins were members of a large carboxylesterase family, of which plant proteins form a monophyletic group and some are assigned defensive functions with no intrinsic catalytic activities identified. Site-directed mutagenesis with soybean HID protein suggested that the characteristic oxyanion hole and catalytic triad are essential for the dehydratase as well as the faint esterase activities. The findings, to our knowledge, represent a new example of recruitment of enzymes of primary metabolism during the molecular evolution of plant secondary metabolism.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号