首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3413篇
  免费   221篇
  国内免费   1篇
  2022年   9篇
  2021年   28篇
  2020年   32篇
  2019年   49篇
  2018年   45篇
  2017年   51篇
  2016年   62篇
  2015年   110篇
  2014年   114篇
  2013年   194篇
  2012年   247篇
  2011年   200篇
  2010年   149篇
  2009年   138篇
  2008年   233篇
  2007年   256篇
  2006年   223篇
  2005年   205篇
  2004年   221篇
  2003年   221篇
  2002年   211篇
  2001年   60篇
  2000年   49篇
  1999年   54篇
  1998年   49篇
  1997年   24篇
  1996年   34篇
  1995年   26篇
  1994年   31篇
  1993年   23篇
  1992年   29篇
  1991年   37篇
  1990年   22篇
  1989年   14篇
  1988年   20篇
  1987年   19篇
  1986年   12篇
  1985年   17篇
  1984年   18篇
  1983年   15篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   5篇
  1976年   5篇
  1975年   8篇
  1974年   5篇
  1973年   6篇
  1972年   7篇
  1971年   4篇
排序方式: 共有3635条查询结果,搜索用时 203 毫秒
1.
2.
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.  相似文献   
3.
We discovered a new cataract mutation, kfrs4, in the Kyoto Fancy Rat Stock (KFRS) background. Within 1 month of birth, all kfrs4/kfrs4 homozygotes developed cataracts, with severe opacity in the nuclei of the lens. In contrast, no opacity was observed in the kfrs4/+ heterozygotes. We continued to observe these rats until they reached 1 year of age and found that cataractogenesis did not occur in kfrs4/+ rats. To define the histological defects in the lenses of kfrs4 rats, sections of the eyes of these rats were prepared. Although the lenses of kfrs4/kfrs4 homozygotes showed severely disorganised fibres and vacuolation, the lenses of kfrs4/+ heterozygotes appeared normal and similar to those of wild-type rats. We used positional cloning to identify the kfrs4 mutation. The mutation was mapped to an approximately 9.7-Mb region on chromosome 7, which contains the Mip gene. This gene is responsible for a dominant form of cataract in humans and mice. Sequence analysis of the mutant-derived Mip gene identified a 5-bp insertion. This insertion is predicted to inactivate the MIP protein, as it produces a frameshift that results in the synthesis of 6 novel amino acid residues and a truncated protein that lacks 136 amino acids in the C-terminal region, and no MIP immunoreactivity was observed in the lens fibre cells of kfrs4/kfrs4 homozygous rats using an antibody that recognises the C- and N-terminus of MIP. In addition, the kfrs4/+ heterozygotes showed reduced expression of Mip mRNA and MIP protein and the kfrs4/kfrs4 homozygotes showed no expression in the lens. These results indicate that the kfrs4 mutation conveys a loss-of-function, which leads to functional inactivation though the degradation of Mip mRNA by an mRNA decay mechanism. Therefore, the kfrs4 rat represents the first characterised rat model with a recessive mutation in the Mip gene.  相似文献   
4.
5.
6.
7.
Substance P is known to modulate neuronal nicotinicacetylcholine receptors (nAChRs) in the sympathetic nervous system.There are two conflicting proposals for the mechanism of this effect, an indirect action mediated by protein kinase C (PKC) and a direct interaction with receptor subunits. We studied the mechanisms of thiseffect in PC-12 cells. Substance P enhanced the decay of thenicotine-induced whole cell current. This effect was fast in its onsetand was not antagonized by guanosine5'-O-(2-thiodiphosphate), a G protein blocker, orstaurosporine, a nonselective PKC blocker. Staurosporine failed toreverse the inhibition by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a synthetic diacylglycerol analog known to activate PKC. Theinhibitory effects of the peptide and OAG were preserved in excisedpatches, but substance P applied to the extra patch membrane wasineffective in the cell-attached patch configuration. We conclude thatsubstance P modulates neuronal nAChRs most likely by direct interactions with the receptors but independently from activation ofPKC or G proteins and that PKC does not participate in modulation by OAG.

  相似文献   
8.
Thymidylate synthetase (EC 2.1.1.45) from rat regenerating liver has been purified over 5000-fold to apparent homogeneity by a procedure involving two affinity methods. Molecular weight of the native enzyme was found to be about 68,000, as determined by gel filtration. Electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate yielded a single band of molecular weight of 35,000, suggesting that thymidylate synthetase is a dimer of very similar or identical subunits. The Michaelis constants for deoxyuridylate (dUMP) and (+/-)L-5,10-methylenetetrahydrofolate are 6.8 microM and 65 microM, respectively. Reaction kinetics and product inhibition studies reveal the enzymatic mechanism to be ordered sequential. 5-Fluoro-dUMP, halogenated analog of the nucleotide substrate is a competitive inhibitor of the enzyme, with an apparent Ki value of 5 nM. Amethopterin, analog of the cofactor is also a competitive inhibitor with an apparent Ki value of 23 microM.  相似文献   
9.
Simulating Evolution by Gene Duplication   总被引:19,自引:5,他引:14       下载免费PDF全文
Tomoko Ohta 《Genetics》1987,115(1):207-213
By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. There is a large fluctuation in the outcome even if parameters are the same. When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J.B.S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes.  相似文献   
10.
The increases in the activities of hepatic thymidylate synthetase and thymidine kinase were significantly suppressed at 24 h after 70% partial hepatectomy in rats which had been administered a microtubule disrupter, colchicine or vincristine. The decrease of these enzymic activities was accompanied by a reduction of DNA content in 24 h regenerating liver. The immunoblotting assay showed that the depression of the thymidylate synthetase activity by the injection of colchicine or vincristine was due to the decrease of the enzyme protein. These results indicate that colchicine and vincristine inhibit the DNA synthesis during liver regeneration by inhibiting the induction of the key enzyme in DNA synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号