首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1203篇
  免费   92篇
  2023年   7篇
  2022年   7篇
  2021年   35篇
  2020年   20篇
  2019年   25篇
  2018年   17篇
  2017年   31篇
  2016年   53篇
  2015年   65篇
  2014年   83篇
  2013年   89篇
  2012年   104篇
  2011年   95篇
  2010年   57篇
  2009年   51篇
  2008年   60篇
  2007年   63篇
  2006年   58篇
  2005年   52篇
  2004年   51篇
  2003年   50篇
  2002年   48篇
  2001年   13篇
  2000年   8篇
  1999年   12篇
  1998年   15篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   5篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   2篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1964年   4篇
排序方式: 共有1295条查询结果,搜索用时 15 毫秒
131.
132.
Integrins are potential targets for the development of antiinflammatory agents. Here we develop a novel high-throughput assay by allowing a chemical library to compete with phage display peptide binding and identify a novel small-molecule ligand to the leukocyte-specific alpha(M)beta(2) integrin. The identified thioxothiazolidine-containing compound, IMB-10, had an unexpected activity in that it stabilized binding of alpha(M)beta(2) to its endogenous ligands proMMP-9 and fibrinogen. Single amino acid substitutions in the activity-regulating C-terminal helix and the underlying region in the ligand-binding I domain of the integrin suppressed the effect of IMB-10. A computational model indicated that IMB-10 occupies a distinct cavity present only in the activated form of the integrin I domain. IMB-10 inhibited alpha(M)beta(2)-dependent migration in vitro and inflammation-induced neutrophil emigration in vivo. Stabilization of integrin-mediated adhesion by a small molecule is a novel means to inhibit cell migration and may have a utility in treatment of inflammatory diseases involving leukocyte recruitment.  相似文献   
133.
Tubuloglomerular feedback (TGF) stabilizes nephron function from minute to minute and adapts to different steady-state inputs to maintain this capability. Such adaptation inherently renders TGF less efficient at buffering long-term disturbances, but the magnitude of loss is unknown. We undertook the present study to measure the compromise between TGF and TGF adaptation in transition from acute to chronic decline in proximal reabsorption (Jprox). As a tool, we blocked proximal tubule sodium-glucose cotransport with the SGLT2 blocker dapagliflozin in hyperglycemic rats with early streptozotocin diabetes, a condition in which a large fraction of proximal fluid reabsorption owes to SGLT2. Dapagliflozin acutely reduced proximal reabsorption leading to a 70% increase in early distal chloride, a saturated TGF response, and a major reduction in single nephron glomerular filtration rate (SNGFR). Acute and chronic effects on Jprox were indistinguishable. Adaptations to 10-12 days of dapagiflozin included increased reabsorption by Henle's loop, which caused a partial relaxation in the increased tone exerted by TGF that could be explained without desensitization of TGF. In summary, TGF contributes to long-term fluid and salt balance by mediating a persistent decline in SNGFR as the kidney adapts to a sustained decrease in Jprox.  相似文献   
134.
Current techniques to describe atrial function are limited by their load dependency and hence do not accurately reflect intrinsic mechanical properties. To assess the impact of atrial fibrillation on atrial function, combined pressure-volume relationships (PVR) measured by conductance catheters were used to evaluate the right (RA) and left (LA) atrium in 12 isoflurane-anesthetized pigs. Biatrial PVR were recorded over a wide range of volumes during transient caval occlusion at baseline sinus rhythm (SR), after onset of rapid atrial pacing (RAP), after 1 h of RAP, after conversion to SR, and after 1 h of recovery. Cardiac output decreased by 16% (P = 0.008) with onset of RAP. Mean LA and RA pressures increased by 21 and 40% (P < 0.001), respectively, and remained elevated during the entire recovery period. RA reservoir function increased from 51 to 58% and significantly dropped to 43% after resumption of SR (P = 0.017). Immediately after RAP, a right shift of LA end-systolic PVR-intercept for end-systolic volume required to generate an atrial end-systolic pressure of 10 mmHg (24.4 ± 4.9 to 28.1 ± 5.2 ml, P = 0.005) indicated impaired contractility compared with baseline. Active LA emptying fraction dropped from 17.6 ± 7.5 to 11.7 ± 3.7% (P < 0.001), LA stroke volume and ΔP/Δt(max)/P declined by 22% (P = 0.038 and 0.026, respectively), while there was only a trend to impaired RA systolic function. Stiffness quantified by the ratio of pressure to volume at end-diastole was increased immediately after RAP only in the RA (P = 0.020), but end-diastolic PVR shifted rightward in both atria (P = 0.011 LA, P = 0.045 RA). These data suggest that even short periods of RAP have a differential impact on RA and LA function, which was sustained for 1 h after conversion to SR.  相似文献   
135.
Myelin basic protein (MBP), particularly the classic 18.5-kDa isoform, is a major structural protein of the myelin sheath of the central nervous system. It is an intrinsically disordered, peripheral membrane protein that shows structural polymorphism in combination with several overlapping interaction sites. Here, double electron-electron resonance (DEER) spectroscopy, in combination with a simplified, semi-quantitative analysis based on Monte Carlo simulations, is used to determine the distance distribution of murine 18.5-kDa MBP, unmodified charge component-C1, on large unilamellar vesicles of a lipid composition mimicking the cytoplasmic leaflet of myelin. Three singly spin-labeled MBP variants and a mixture of singly-labeled MBP variants are used. The MBPs, each bearing only one spin label, exhibit average intermolecular distances that are significantly shorter than the distances expected when assuming a random distribution at the employed lipid-to-protein ratios, indicating self-assembly on the membrane. The distribution of elliptical pervaded areas (hard ellipses) on a two-dimensional surface can serve as a model of the nonspecific self-assembly process. The corresponding pair correlation functions g(r) are determined from Monte Carlo simulations with variation of various parameters such as the ellipses' aspect ratios. Comparing the g(r) values with the DEER-derived distance distributions, the pervaded volume is best characterized by a nearly elliptical projection onto the membrane, with an aspect ratio of approximately 1.5, and with the longer semi-axis of approximately 1.4nm. The approach of using local information from DEER with low-resolution models derived from Monte Carlo simulations can be applied to study the lateral self-assembly properties of other protein complexes on membranes.  相似文献   
136.
Purposeβ-Muricholic acid (βMCA) is a trihydroxylated bile acid that constitutes the major bile acid in rat and mouse. βMCA is more hydrophilic than ursodeoxycholic acid and has been evaluated for dissolution of cholesterol gallstones. Since it is unknown if βMCA has beneficial effects on hepatocyte cell death we determined the effect of tauro-βMCA (TβMCA) on apoptosis in vitro.MethodsHuman Ntcp-transfected HepG2 cells and primary hepatocytes from rat and mouse were incubated with the proapoptotic glycochenodeoxycholic acid (GCDCA) as well as the free fatty acid palmitate in the absence and presence of TβMCA. Apoptosis was quantified using caspase 3/7-assays and after Hoechst 33342 staining. The mitochondrial membrane potential (MMP) was measured fluorometrically using JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazol-carbocyaniniodide). Immunoblotting was performed against the proapoptotic Bcl-2-protein Bax.ResultsIn Ntcp-HepG2 cells, GCDCA markedly increased apoptosis after 4 h. Co-incubation with TβMCA reduced apoptosis to 49% (p < 0.01 vs. GCDCA, each; n = 6). While GCDCA (100 μmol/L) reduced the MMP to 34% after 6 h, combination treatment with TβMCA restored the MMP to control levels at all time points (n = 4). TβMCA also restored breakdown of the MMP induced by palmitate. GCDCA induced a translocation of Bax from the cytosol to mitochondria that was inhibited by simultaneous treatment with TβMCA in eqimolar concentrations.ConclusionsTβMCA restricts hepatocellular apoptosis induced by low micromolar concentrations of GCDCA or palmitate via inhibition of Bax translocation to mitochondria and preservation of the MMP. Thus, further studies are warranted to evaluate a potential use of TβMCA in ameliorating liver injury in cholestasis.  相似文献   
137.
138.
Coxsackievirus A7 (CAV7) is a rarely detected and poorly characterized serotype of the Enterovirus species Human enterovirus A (HEV-A) within the Picornaviridae family. The CAV7-USSR strain has caused polio-like epidemics and was originally thought to represent the fourth poliovirus type, but later evidence linked this strain to the CAV7-Parker prototype. Another isolate, CAV7-275/58, was also serologically similar to Parker but was noninfectious in a mouse model. Sequencing of the genomic region encoding the capsid proteins of the USSR and 275/58 strains and subsequent comparison with the corresponding amino acid sequences of the Parker strain revealed that the Parker and USSR strains are nearly identical, while the 275/58 strain is more distant. Using electron cryomicroscopy and three-dimensional image reconstruction, the structures of the CAV7-USSR virion and empty capsid were resolved to 8.2-Å and 6.1-Å resolutions, respectively. This is one of the first detailed structural analyses of the HEV-A species. Using homology modeling, reconstruction segmentation, and flexible fitting, we constructed a pseudoatomic T = 1 (pseudo T = 3) model incorporating the three major capsid proteins (VP1 to VP3), addressed the conformational changes of the capsid and its constituent viral proteins occurring during RNA release, and mapped the capsid proteins'' variable regions to the structure. During uncoating, VP4 and RNA are released analogously to poliovirus 1, the interfaces of VP2 and VP3 are rearranged, and VP1 rotates. Variable regions in the capsid proteins were predicted to map mainly to the surface of VP1 and are thus likely to affect the tropism and pathogenicity of CAV7.  相似文献   
139.
Cathepsins are crucial in antigen processing in the major histocompatibility complex class II (MHC II) pathway. Within the proteolytic machinery, three classes of proteases (i.e., cysteine, aspartic, and serine proteases) are present in the endocytic compartments. The combined action of these proteases generates antigenic peptides from antigens, which are loaded to MHC II molecules for CD4+ T cell presentation. Detection of active serine proteases in primary human antigen-presenting cells (APCs) is restricted because of the small numbers of cells isolated from the peripheral blood. For this purpose, we developed a novel highly sensitive α-aminoalkylphosphonate diphenyl ester (DAP) activity-based probe to detect the serine protease cathepsin G (CatG) in primary APCs and after Epstein-Barr virus (EBV) exposure. Although CatG activity was not altered after short-term exposure of EBV in primary myeloid dendritic cells 1 (mDC1s), the aspartic protease cathepsin D (CatD) was reduced, suggesting that EBV is responsible for mitigating the presentation of a model antigen tetanus toxoid C-fragment (TTCF) by reduction of CatD. In addition, CatG activity was reduced to background levels in B cells during cell culture; however, these findings were independent of EBV transformation. In conclusion, our activity-based probe can be used for both Western blot and 96-well-based high-throughput CatG detection when cell numbers are limited.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号