首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   50篇
  国内免费   32篇
  2024年   1篇
  2023年   17篇
  2022年   30篇
  2021年   70篇
  2020年   45篇
  2019年   39篇
  2018年   53篇
  2017年   19篇
  2016年   32篇
  2015年   40篇
  2014年   30篇
  2013年   30篇
  2012年   30篇
  2011年   26篇
  2010年   15篇
  2009年   9篇
  2008年   15篇
  2007年   9篇
  2006年   13篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有595条查询结果,搜索用时 109 毫秒
111.
A highly sensitive method for the detection of 6‐mercaptopurine (MP) by resonance Rayleigh light scattering (RLS) method was developed. Gold nanoparticles (AuNPs) were synthesized by a modified seed method and characterized using transmission electron microscopy (TEM). AuNPs were bound to MP via covalent bonding to form the MP–AuNPs complex, which increased the RLS intensity of MP at 347 nm (increased by 65.7%). Under optimum conditions, the magnitude of the enhanced RLS intensity for MP–AuNPs was proportional to MP concentration in the range 0.0681–1.702 μg mL?1. The linear regression equation was represented as follows: ΔI RLS = 9.31 + 82.42c (r  = 0.9948). The limit of detection (LOD, 3σ) was 3.32 ng mL?1. The system was applied successfully to detect MP in pharmaceuticals. MP recoveries were 99.9–101.7% with a relative standard deviation (RSD) (n  = 5) of 0.59–0.77% for three synthetic samples, and 97.5–110.0% with an RSD of 0.98–2.10% (n =  5) for tablet samples.  相似文献   
112.
Pancreatic adenosquamous carcinoma (PASC) — a rare pathological pancreatic cancer (PC) type — has a poor prognosis due to high malignancy. To examine the heterogeneity of PASC, we performed single-cell RNA sequencing (scRNA-seq) profiling with sample tissues from a healthy donor pancreas, an intraductal papillary mucinous neoplasm, and a patient with PASC. Of 9,887 individual cells, ten cell subpopulations were identified, including myeloid, immune, ductal, fibroblast, acinar, stellate, endothelial, and cancer cells. Cancer cells were divided into five clusters. Notably, cluster 1 exhibited stem-like phenotypes expressing UBE2C, ASPM, and TOP2A. We found that S100A2 is a potential biomarker for cancer cells. LGALS1, NPM1, RACK1, and PERP were upregulated from ductal to cancer cells. Furthermore, the copy number variations in ductal and cancer cells were greater than in the reference cells. The expression of EREG, FCGR2A, CCL4L2, and CTSC increased in myeloid cells from the normal pancreas to PASC. The gene sets expressed by cancer-associated fibroblasts were enriched in the immunosuppressive pathways. We demonstrate that EGFR-associated ligand-receptor pairs are activated in ductal-stromal cell communications. Hence, this study revealed the heterogeneous variations of ductal and stromal cells, defined cancer-associated signaling pathways, and deciphered intercellular interactions following PASC progression.  相似文献   
113.
CKLF1, a human cytokine that is a functional ligand for CCR4, is upregulated in various inflammation and autoimmune diseases. CKLF1 contains at least two secreted forms, the C-terminal peptides C19 and C27. Chemically synthesized C19 and C27 can interact with CCR4 and attenuate allergic inflammation. In this study, we found C19 and C27 could inhibit SDF-1-induced CXCR4-mediated chemotaxis and promote CXCR4 internalization. The inhibitory effect was due to desensitization of CXCR4, which was mediated by CCR4. Further experiments confirmed that CXCR4 desensitization required activation of PI3K/PKC pathway. Altogether our data elucidate the mechanism of C19- and C27-induced CXCR4 desensitization.  相似文献   
114.
Zhang G  Sun S  Zhu T  Lin Z  Gu J  Li D  Gu Q 《Phytochemistry》2011,72(11-12):1436-1442
Chemical investigation of the endophytic fungus Emericella sp. (HK-ZJ) isolated from the mangrove plant Aegiceras corniculatum led to isolation of six isoindolones derivatives termed as emerimidine A and B and emeriphenolicins A and D, and six previously reported compounds named aspernidine A and B, austin, austinol, dehydroaustin, and acetoxydehydroaustin, respectively. Their structures were elucidated on the basis of NMR spectroscopic evidence while the anti-influenza A viral (H1N1) activities of eight compounds were also evaluated using the cytopathic effect (CPE) inhibition assay.  相似文献   
115.
Studies in animal models have indicated that dietary isothiocyanates (ITCs) exhibit cancer preventive activities through carcinogen detoxification-dependent and -independent mechanisms. The carcinogen detoxification-independent mechanism of cancer prevention by ITCs has been attributed at least in part to their ability to induce apoptosis of transformed (initiated) cells (e.g. through suppression of IκB kinase and nuclear factor κB as well as other proposed mechanisms). In the current studies we show that ITC-induced apoptosis of oncogene-transformed cells involves thiol modification of DNA topoisomerase II (Top2) based on the following observations. 1) siRNA-mediated knockdown of Top2α in both SV40-transformed MEFs and Ras-transformed human mammary epithelial MCF-10A cells resulted in reduced ITC sensitivity. 2) ITCs, like some anticancer drugs and cancer-preventive dietary components, were shown to induce reversible Top2α cleavage complexes in vitro. 3) ITC-induced Top2α cleavage complexes were abolished by co-incubation with excess glutathione. In addition, proteomic analysis revealed that several cysteine residues on human Top2α were covalently modified by benzyl-ITC, suggesting that ITC-induced Top2α cleavage complexes may involve cysteine modification. Interestingly, consistent with the thiol modification mechanism for Top2α cleavage complex induction, the thiol-reactive selenocysteine, but not the non-thiol-reactive selenomethionine, was shown to induce Top2α cleavage complexes. In the aggregate, our results suggest that thiol modification of Top2α may contribute to apoptosis induction in transformed cells by ITCs.  相似文献   
116.
目的探讨双歧三联活菌胶囊对急性胰腺炎患者肠黏膜屏障功能的保护作用。方法选取急性胰腺炎患者66例,随机分为观察组和对照组。两组患者均予以禁食水、持续胃肠减压、解痉镇痛、抗感染、抑制胃酸分泌、生长抑素、改善局部微循环和保持水电解质酸碱平衡等常规治疗。观察组患者加用双歧杆菌三联活菌胶囊420mg水化后自胃管灌注,夹管1.5h,3次/d,连用7d。观察两组患者的治疗前后肠黏膜屏障功能的变化情况,并比较其临床疗效。结果治疗7d后,两组患者血清内毒素、TNF—α和D-乳酸水平均有明显下降(P〈0.05或P〈0.01),且观察组下降值比对照组更明显(P〈0.05);同时观察组患者临床总有效率为93.94%,明显高于对照组的75.76%(χ2=4.24,P〈0.05)。结论双歧杆菌三联活菌胶囊治疗急性胰腺炎效果较好,能降低血清内毒素、TNF-α和D-乳酸水平,对患者肠黏膜屏障功能具有良好的保护作用。  相似文献   
117.
118.
Many knotted proteins have been discovered recently, but the folding process of which remains elusive. HP0242 is a hypothetical protein from Helicobacter pylori, which is a model system for studying the folding pathway of a knotted protein. In this study, we report the 1H, 13C, and 15N chemical shift assignments of HP0242. The results will enable us to further investigate HP0242 by NMR experiments.  相似文献   
119.
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that provide the ribosome with aminoacyl-tRNA substrates for protein synthesis. Mutations in aaRSs lead to various neurological disorders in humans. Many aaRSs utilize editing to prevent error propagation during translation. Editing defects in alanyl-tRNA synthetase (AlaRS) cause neurodegeneration and cardioproteinopathy in mice and are associated with microcephaly in human patients. The cellular impact of AlaRS editing deficiency in eukaryotes remains unclear. Here we use yeast as a model organism to systematically investigate the physiological role of AlaRS editing. Our RNA sequencing and quantitative proteomics results reveal that AlaRS editing defects surprisingly activate the general amino acid control pathway and attenuate the heatshock response. We have confirmed these results with reporter and growth assays. In addition, AlaRS editing defects downregulate carbon metabolism and attenuate protein synthesis. Supplying yeast cells with extra carbon source partially rescues the heat sensitivity caused by AlaRS editing deficiency. These findings are in stark contrast with the cellular effects caused by editing deficiency in other aaRSs. Our study therefore highlights the idiosyncratic role of AlaRS editing compared with other aaRSs and provides a model for the physiological impact caused by the lack of AlaRS editing.  相似文献   
120.

Background

The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells.

Results

Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954.

Conclusions

Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号