首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9210篇
  免费   728篇
  国内免费   417篇
  2023年   66篇
  2022年   141篇
  2021年   388篇
  2020年   271篇
  2019年   280篇
  2018年   316篇
  2017年   254篇
  2016年   373篇
  2015年   561篇
  2014年   616篇
  2013年   708篇
  2012年   802篇
  2011年   735篇
  2010年   465篇
  2009年   341篇
  2008年   477篇
  2007年   394篇
  2006年   379篇
  2005年   314篇
  2004年   269篇
  2003年   229篇
  2002年   225篇
  2001年   172篇
  2000年   188篇
  1999年   137篇
  1998年   85篇
  1997年   82篇
  1996年   77篇
  1995年   59篇
  1994年   63篇
  1993年   48篇
  1992年   90篇
  1991年   76篇
  1990年   77篇
  1989年   61篇
  1988年   47篇
  1987年   67篇
  1986年   45篇
  1985年   37篇
  1984年   33篇
  1983年   20篇
  1982年   25篇
  1980年   22篇
  1979年   26篇
  1978年   19篇
  1977年   21篇
  1975年   18篇
  1973年   21篇
  1972年   17篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Xu Y  Wu F  Tan L  Kong L  Xiong L  Deng J  Barbera AJ  Zheng L  Zhang H  Huang S  Min J  Nicholson T  Chen T  Xu G  Shi Y  Zhang K  Shi YG 《Molecular cell》2011,42(4):451-464
DNA methylation at the 5 position of cytosine (5mC) in the mammalian genome is a key epigenetic event critical for various cellular processes. The ten-eleven translocation (Tet) family of 5mC-hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), offers a way for dynamic regulation of DNA methylation. Here we report that Tet1 binds to unmodified C or 5mC- or 5hmC-modified CpG-rich DNA through its CXXC domain. Genome-wide mapping of Tet1 and 5hmC reveals mechanisms by which Tet1 controls 5hmC and 5mC levels in mouse embryonic stem cells (mESCs). We also uncover a comprehensive gene network influenced by Tet1. Collectively, our data suggest that Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting 5mC to 5hmC through hydroxylase activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 targets, ultimately contributing to mESC differentiation and the onset of embryonic development.  相似文献   
962.
Species of the genus Gambierdiscus Adachi & Fukuyo, in particular G. toxicus Adachi & Fukuyo are known producers of neurotoxins associated with ciguatera fish poisoning (CFP). In this study live samples were collected from seaweed beds of the east coast of Sabah, Malaysian Borneo and a strain of Gambierdiscus was isolated and cultured. Examination of the thecal fine morphology was undertaken using light, epifluorescence, and scanning electron microscopy. Observed morphological features and their associated morphometric information enabled identification to Gambierdiscus belizeanus Faust. This represents the first report for the occurrence of G. belizeanus in the Asia Pacific region.  相似文献   
963.
Dysregulated reactive oxygen species (ROS) generation contributes to many human pathologies, including cancer and diabetes. During normal wound repair, inflammation-induced ROS production must be tightly controlled, but the mechanisms reining their generation remain unclear. Herein, we show that transforming growth factor β-activated kinase 1 (TAK1) directly regulates stem cell factor (SCF) expression, which activates the protein kinase B (PKB)α pro-survival pathway in a cell-autonomous manner to protect keratinocytes from ROS-mediated cell death. TAK1 is a pivotal inflammatory mediator whose expression was transiently elevated during wound healing, paralleling the ROS production profile. TAK1 deficiency in keratinocytes led to increased apoptosis in response to anoikis and TNF-α treatment and was associated with elevated ROS level as analyzed by FACS. Using organotypic skin co-culture and comparative growth factor array analysis, we revealed a cell-autonomous mechanism that involved the SCF/c-Kit/PKBα signaling cascade. Ectopic expression of TAK1 or treatment with exogenous recombinant SCF restored the increased ROS production and apoptotic cell death in TAK1-deficient keratinocytes. Conversely, normal keratinocytes treated with various inhibitors targeting the SCF/c-Kit/PKBα pathway exhibited increased ROS production and TNF-α- or anoikis-induced apoptosis. Our study reveals a novel anti-apoptotic role for SCF in keratinocytes and identifies TAK1 as a novel player uniting inflammation and ROS regulation in skin redox biology.  相似文献   
964.
Rice Hoja Blanca Tenuivirus (RHBV), a negative strand RNA virus, has been identified to infect rice and is widely transmitted by the insect vector. NS3 protein encoded by RHBV RNA3 was reported to be a potent RNAi suppressor to counterdefense RNA silencing in plants, insect cells, and mammalian cells. Here, we report the crystal structure of the N-terminal domain of RHBV NS3 (residues 21–114) at 2.0 Å. RHBV NS3 N-terminal domain forms a dimer by two pairs of α-helices in an anti-parallel mode, with one surface harboring a shallow groove at the dimension of 20 Å × 30 Å for putative dsRNA binding. In vitro RNA binding assay and RNA silencing suppression assay have demonstrated that the structural conserved residues located along this shallow groove, such as Arg50, His51, Lys77, and His85, participate in dsRNA binding and RNA silencing suppression. Our results provide the initial structural implications in understanding the RNAi suppression mechanism by RHBV NS3.  相似文献   
965.
TIEG1 (TGF-β inducible early gene 1) plays a significant role in regulating cell proliferation and apoptosis in various cell types. Previous studies have shown a close relationship between the expression level of TIEG1 and various cancers, including breast, prostate, colorectal and pancreatic cancer. In this study, we up-regulated the gene expression of TIEG1 in SW1990 pancreatic cancer cell line by a lentivirus transfection system and investigated its potential as a therapeutic target for pancreatic cancer. The results showed that lentivirus-mediated overexpression of TIEG1 gene inhibited human pancreatic cancer SW1990 cell proliferation and caused the cell cycle arrest at the G1-phase in vitro. SW1990 cells transduced with lenti-TIEG1 showed significant inhibition of colony formation and cancer cell growth in 3-D culture model. Moreover, overexpression of TIEG1 gene significantly slowed the growth of SW1990 xenografts in nude mice. Taken together, these data provided evidence that overexpression of TIEG1 gene by a lentivirus transfection system led to suppressed human pancreatic cancer cell growth and might therefore be a feasible approach in the clinical management of pancreatic cancer.  相似文献   
966.
967.
968.
Milk fat globule-EGF factor 8 (MFG-E8) has been shown to play an important role in maintaining the integrity of the intestinal mucosa and to accelerate healing of the mucosa in septic mice. Herein, we (a) analyzed the expression of MFG-E8 in the gut of wild-type (WT) C57BL/6 (MFG-E8(+/+)) mice with and without dextran sulfate sodium (DSS)-induced colitis, (b) characterized the pathological changes in intestinal mucosa of MFG-E8(+/+) and MFG-E8(-/-) mice with DSS-induced colitis and (c) examined the therapeutic role of MFG-E8 in inflammatory bowel disease by using DSS-induced colitis model. Our data documented that there was an increase in colonic and rectal MFG-E8 expression in MFG-E8(+/+) mice during the development of DSS colitis. MFG-E8 levels in both tissues decreased to below baseline during the recovery phase in mice with colitis. Changes in MFG-E8 gene expression correlated to the levels of inflammatory response and crypt-epithelial injury in both colonic and rectal mucosa in MFG-E8(+/+) mice. MFG-E8(-/-)mice developed more severe crypt-epithelial injury than MFG-E8(+/+) mice during exposure to DSS with delayed healing of intestinal epithelium during the recovery phase of DSS colitis. Administration of MFG-E8 during the recovery phase ameliorated colitis and promoted mucosal repair in both MFG-E8(-/-) and MFG-E8(+/+) mice, indicating that lack of MFG-E8 causes increased susceptibility to colitis and delayed mucosal healing. These data suggest that MGF-E8 is an essential protective factor for gut epithelial homeostasis, and exogenous administration of MFG-E8 may represent a novel therapeutic target in inflammatory bowel disease.  相似文献   
969.
The Wood-Ljungdahl pathway is responsible for acetyl-CoA biosynthesis and used as a major mean of generating energy for growth in some anaerobic microbes. Series of genes, from the anaerobic human pathogen Clostridium difficile, have been identified that show striking similarity to the genes involved in this pathway including methyltetrahydrofolate- and corrinoid-dependent methyltransferase. This methyltransferase plays a central role in this pathway that transfers the methyl group from methyltetrahydrofolate to a cob(I)amide center in the corrinoid iron-sulfur protein. In this study, we developed two efficient expression and purification methods for methyltransferase from C. difficile for the first time with two expression vectors MBPHT-mCherry2 and pETDuet-1, respectively. Using the latter vector, more than 50mg MeTr was produced per liter Luria-Bertani broth media. The recombinant methyltransferase was well characterized by SDS-PAGE, gel filtration chromatography, enzyme assay and far-UV circular dichroism (CD). Furthermore, a highly effective approach was established for determining the methyl transfer activity of the methyltetrahydrofolate- and cobalamin-dependent methyltransferase using exogenous cobalamin as a substrate by stopped-flow method. These results will provide a solid basis for further study of the methyltransferase and the Wood-Ljungdahl pathway.  相似文献   
970.
Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号