首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   912篇
  免费   58篇
  2022年   3篇
  2021年   10篇
  2019年   5篇
  2018年   10篇
  2017年   8篇
  2016年   10篇
  2015年   23篇
  2014年   27篇
  2013年   81篇
  2012年   45篇
  2011年   56篇
  2010年   37篇
  2009年   43篇
  2008年   66篇
  2007年   67篇
  2006年   57篇
  2005年   55篇
  2004年   68篇
  2003年   66篇
  2002年   54篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   17篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   8篇
  1992年   11篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1981年   7篇
  1980年   11篇
  1979年   5篇
  1978年   7篇
  1977年   3篇
  1976年   6篇
  1975年   7篇
  1974年   2篇
  1973年   2篇
  1968年   2篇
排序方式: 共有970条查询结果,搜索用时 31 毫秒
71.
Ischemia limits the delivery of oxygen and glucose to cells and disturbs the maintenance of mitochondrial membrane potential (MMP). MMP regulates the production of high-energy phosphate and apoptotic cascading. Thus, MMP is an important parameter determining the fate of neurons. Differences in the time course of MMP according to the grading of the ischemic impact have not been clarified. MMP and intracellular ATP contents were monitored before and after short-term oxygen-glucose deprivation. A primary hippocampal culture seeded in a 35 mm fenestrated dish for fluorescence microscopy was mounted in a sealed chamber for an anaerobic incubation. A continuous flow of 100% nitrogen into the chamber and a replacement of glucose-free medium allowed the condition of oxygen-glucose deprivation (OGD), thereby extrapolating ischemia. MMP was evaluated by the fluorescence of a voltage-dependent dye, JC-1, under fluorescence microscopy. The intracellular ATP content was evaluated in a hippocampal culture seeded in a 96-well plate by the luciferin-luciferase reaction after a designated period of OGD. During OGD, MMP decreased to 0.72+/-0.03 (normalized JC-1 fluorescence), then increased to the hyperpolarized level 1.99+/-0.12 during 60 min reoxygenation after 30 min OGD. MMP after 60 min OGD decreased and recovered occasionally during reoxygenation. After 90 min OGD and reoxygenation, MMP was reduced and never recovered. The intracellular ATP content was 8.1+/-6.6 and 3.2+/-1.9% after 30 min OGD and 30 min reoxygenation following 30 min OGD, respectively; 60 min OGD did not significantly change these levels (7.1+/-5.8, 2.6+/-0.5%). Hyperpolarization after OGD did not accompany ATP production. This observation suggests the inhibition of electron reentry into an inner membrane during reoxygenation and the disturbance of FoF1-ATP synthase. This pathological finding of an energy-producing system after OGD may provide a clue to explain post-ischemic energy failure.  相似文献   
72.
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.  相似文献   
73.
The carcinoembryonic antigen (CEA) family consists of a large group of evolutionarily and structurally divergent glycoproteins. The murine CEACAM9 and CEACAM11-related proteins as well as the pregnancy-specific glycoproteins (PSG) are secreted members of the CEA family which are differentially expressed in fetal trophoblast cell populations during placental development. PSG are essential for a successful pregnancy, possibly by protecting the semiallotypic fetus from the maternal immune system. In contrast, Ceacam10 mRNA, coding for a protein identical in structure with CEACAM11-related proteins, is expressed in the maternal decidua surrounding the implantation site of the conceptus only during early stages of gestation between day 6.5 and day 10.5 postcoitum. To determine its role during murine development, we inactivated Ceacam10. Ceacam10(-/-) mice developed, like the previously established Ceacam9(-/-) mice, indistinguishably from wild-type littermates with respect to sex ratio, weight gain, and fertility. However, a small but significant reduction of the litter size by 23% was observed in Ceacam10(-/-) matings. Furthermore, combining the Ceacam9 and Ceacam10 null alleles, both located on chromosome 7, by meiotic recombination and subsequent mating of heterozygotes carrying both knockout alleles on one chromosome yielded wild-type and double knockout offspring at the expected Mendelian ratio. Taken together, both Ceacam10 and Ceacam9, alone or in combination, are not essential for either murine placental and embryonic development or for adult life.  相似文献   
74.
Several species of microalgae (phytoplankton), 4 species of freshwater algae and 4 species of marine diatoms, were cultured germ-free in the laboratory. The presence of free D-amino acids was verified in these species by a reversed-phase HPLC analysis. D-Aspartate was detected in all the microalgae examined, but D-alanine was only present in the marine diatoms. The D-amino acid content in Asterionella sp. of the marine diatoms increased from the exponential phase to the stationary phase and then decreased to the phase of decline.  相似文献   
75.
76.
Abstract: Protein synthesis is important in the readaptive processes for cultured astrocytes after hypoxia and subsequent reoxygenation. We have identified 72-kDa inducible heat shock protein (HSP72) as a major stress protein in reoxygenated astrocytes. To assess the mechanism for reoxygenation-mediated induction of HSP72, a reporter gene that consists of a human HSP promoter fused to the luciferase gene was transfected into cultured astrocytes. Analysis of cellular energy nucleotides showed an increase of the ADP/ATP ratio after reoxygenation, which synchronized with activation of the HSP promoter. Activation of the HSP promoter was also observed after an addition of iodoacetic acid to hypoxic astrocytes, which reached the maximum when the ADP/ATP ratio reached 50%, but further decline in the energy profile caused inactivation of this promoter. Inhibition of protein synthesis after reoxygenation resulted in temporary restoration of the energy profile and suppression of the DNA binding activity of the heat shock factor. Addition of quercetin greatly decreased the [3H]leucine incorporation in the polysome fraction without any effect on the mature mRNA formation. These data suggest that the energy depletion in reoxygenation triggers induction of HSP72 after reoxygenation, which may act as a pivotal mediator in the stress response of reoxygenated astrocytes by facilitating protein synthesis.  相似文献   
77.
Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during sustained periods of physical inactivity.  相似文献   
78.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   
79.
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51–DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.  相似文献   
80.
We characterized peptidyl hydroxyproline (Hyp) O-galactosyltransferase (HGT), which is the initial enzyme in the arabinogalactan biosynthetic pathway. An in vitro assay of HGT activity was established using chemically synthesized fluorescent peptides as acceptor substrates and extracts from Arabidopsis (Arabidopsis thaliana) T87 cells as a source of crude enzyme. The galactose residue transferred to the peptide could be detected by high-performance liquid chromatography and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analyses. HGT required a divalent cation of manganese for maximal activity and consumed UDP-d-galactose as a sugar donor. HGT exhibited an optimal pH range of pH 7.0 to 8.0 and an optimal temperature of 35°C. The favorable substrates for the activity seemed to be peptides containing two alternating imino acid residues including at least one acceptor Hyp residue, although a peptide with single Hyp residue without any other imino acids also functioned as a substrate. The results of sucrose density gradient centrifugation revealed that the cellular localization of HGT activity is identical to those of endoplasmic reticulum markers such as Sec61 and Bip, indicating that HGT is predominantly localized to the endoplasmic reticulum. To our knowledge, this is the first characterization of HGT, and the data provide evidence that arabinogalactan biosynthesis occurs in the protein transport pathway.O-glycosylation is the addition of a sugar to hydroxy amino acids such as Thr, Ser, Hyp, Hyl, or Tyr (Lehle et al., 2006). This type of protein modification occurs in many organisms to modify a large variety of proteins. Several types of sugars can be linked to proteins via O-glycosylation, including Man, N-acetylgalactosamine, Glc, Xyl, N-acetylglucosamine, Fuc, Gal, and arabinofuranose (Araf). In addition, elongation of the added sugar residues yields a large variety of oligo- and polysaccharide extensions on the substrate proteins. These modifications are known to play important roles in various phenomena, including pathways required to maintain biological systems and basic cellular functions.Structural analysis of oligo- and polysaccharides in plant cell walls has revealed the presence of three types of O-linked structures, Gal-O-Hyp, Araf-O-Hyp, and Gal-O-Ser (Kieliszewski and Shpak, 2001; Seifert and Roberts, 2007). A part of these three structures has been found on proteins in the super family that includes arabinogalactan protein (AGP) and extensin, which are localized to the cell surface. AGPs contain O-linked arabinogalactan oligo- or polysaccharides attached to Hyp residues (Gal-O-Hyp). It is known that arabinogalactan polysaccharides mainly consist of β-1,3 linkages of Gal polymers (Seifert and Roberts, 2007). Extensin contains short arabino-oligosaccharide chains attached to Hyp residues (Araf-O-Hyp) and single Gal residues linked to Ser residues (Gal-O-Ser). It has been suggested that these O-linked structures play an important role in many stages of growth and development in plants, including signaling, embryogenesis, and programmed cell death (Knox, 2006; Seifert and Roberts, 2007). However, our understanding of the biosynthesis of these O-linked structures is limited at present.Shpak et al. described a novel strategy to elucidate O-glycosylation of AGPs via introduction of synthetic genes encoding a protein substrate of glycosyltransferases into plant cells (Shpak et al., 1999; Estevez et al., 2006). This strategy provided good evidence for the substrate specificities of Hyp O-galactosyltransferase (HGT). Hyp galactosylation occurs on clustered noncontiguous Hyp residues such as Xaa-Hyp-Xaa-Hyp repeats of AGPs (where Xaa is any amino acid except Hyp; Tan et al., 2003). However, the arabinogalactosylation site is not limited to clustered noncontiguous Hyp residues, as isolated Hyp residues with appropriate surrounding sequences can be modified with arabinogalactan (Matsuoka et al., 1995; Shimizu et al., 2005). Therefore, the mechanism of glycosylation to Hyp residues seems complex in plants, while we have little information about the glycosyltransferase(s) involved in arabinogalactan biosynthesis. To examine the enzymatic properties and to identify genes involved in arabinogalactan biosynthesis, we first attempted to establish an in vitro assay for HGT activity, which catalyzes the initial step in arabinogalactan biosynthesis in plants.Here, we report a novel assay for HGT activity based on the use of endoplasmic reticulum (ER)-enriched cell lysates extracted from Arabidopsis (Arabidopsis thaliana) T87 cells as a source of the enzyme and chemically synthesized fluorescent peptides as enzyme substrates. The method enabled us to characterize the enzymatic properties of HGT and to determine the localization of HGT in Arabidopsis cells. Properties of the enzyme and the usefulness of our assay for various studies are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号