首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   47篇
  国内免费   1篇
  2020年   5篇
  2019年   5篇
  2017年   4篇
  2016年   6篇
  2015年   8篇
  2014年   24篇
  2013年   22篇
  2012年   27篇
  2011年   25篇
  2010年   15篇
  2009年   14篇
  2008年   28篇
  2007年   30篇
  2006年   28篇
  2005年   25篇
  2004年   25篇
  2003年   20篇
  2002年   21篇
  2001年   18篇
  2000年   19篇
  1999年   12篇
  1998年   15篇
  1997年   4篇
  1996年   6篇
  1992年   5篇
  1991年   12篇
  1990年   22篇
  1989年   22篇
  1988年   12篇
  1987年   9篇
  1986年   9篇
  1985年   10篇
  1984年   11篇
  1983年   6篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   12篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1971年   6篇
  1970年   6篇
  1969年   4篇
  1967年   3篇
  1966年   3篇
  1965年   4篇
排序方式: 共有647条查询结果,搜索用时 15 毫秒
41.
42.

Background  

Sweat gland adenocarcinoma is a rare malignancy with high metastatic potential seen more commonly in later years of life. Scalp is the most common site of occurrence and it usually spreads to lymph nodes. Liver, lung and bones are the distant sites of metastasis with fatal results. The differentiation between apocrine and eccrine metastatic sweat gland carcinoma is often difficult. The criteria's are inadequate to be of any practical utility.  相似文献   
43.
44.
The relationship between cerebral interstitial oxygen tension (Pt(O(2))) and cellular energetics was investigated in mechanically ventilated, anesthetized rats during progressive acute hypoxia to determine whether there is a "critical" brain Pt(O(2)) for maintaining steady-state aerobic metabolism. Cerebral Pt(O(2)), measured by electron paramagnetic resonance oximetry, decreased proportionately to inspired oxygen fraction. (31)P-nuclear magnetic resonance measurements revealed no changes in P(i), phosphocreatine (PCr)/P(i) ratio, or intracellular pH when arterial blood oxygen tension (Pa(O(2))) was reduced from 145.1 +/- 11.7 to 56.5 +/- 4.4 mmHg (means +/- SE). Intracellular acidosis, a sharp rise in P(i), and a decline in the PCr/P(i) ratio developed when Pa(O(2)) was reduced further to 40.7 +/- 2.3 mmHg. The corresponding Pt(O(2)) values were 15.1 +/- 1.8, 8.8 +/- 0.4, and 6.8 +/- 0.3 mmHg. We conclude that over a range of decreasing oxygen tensions, cerebral oxidative metabolism is not sensitive to oxygen concentration. Oxygen becomes a regulatory substrate, however, when Pt(O(2)) is decreased to a critical level.  相似文献   
45.
46.
Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.  相似文献   
47.
Voltage-activated ion channels are essential for electrical signaling, yet the mechanism of voltage sensing remains under intense investigation. The voltage-sensor paddle is a crucial structural motif in voltage-activated potassium (K(v)) channels that has been proposed to move at the protein-lipid interface in response to changes in membrane voltage. Here we explore whether tarantula toxins like hanatoxin and SGTx1 inhibit K(v) channels by interacting with paddle motifs within the membrane. We find that these toxins can partition into membranes under physiologically relevant conditions, but that the toxin-membrane interaction is not sufficient to inhibit K(v) channels. From mutagenesis studies we identify regions of the toxin involved in binding to the paddle motif, and those important for interacting with membranes. Modification of membranes with sphingomyelinase D dramatically alters the stability of the toxin-channel complex, suggesting that tarantula toxins interact with paddle motifs within the membrane and that they are sensitive detectors of lipid-channel interactions.  相似文献   
48.
49.
[FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO) and two cyanide (CN) ligands as well as a dithiolate bridge. Three accessory proteins (HydE, HydF, and HydG) are presumably responsible for assembling and installing the H-cluster, yet their precise roles and the biosynthetic pathway have yet to be fully defined. In this report, we describe effective cell-free methods for investigating H-cluster synthesis and [FeFe] hydrogenase activation. Combining isotopic labeling with FTIR spectroscopy, we conclusively show that each of the CO and CN ligands derive respectively from the carboxylate and amino substituents of tyrosine. Such in vitro systems with reconstituted pathways comprise a versatile approach for studying biosynthetic mechanisms, and this work marks a significant step towards an understanding of both the protein-protein interactions and complex reactions required for H-cluster assembly and hydrogenase maturation.  相似文献   
50.
In extreme alkaliphiles, Na(+)/H(+) antiporters play a central role in the Na(+) cycle that supports pH homeostasis, Na(+) resistance, solute uptake, and motility. Properties of individual antiporters have only been examined in extremely alkaliphilic soil Bacillus spp., whereas the most alkaline natural habitats usually couple high pH with high salinity. Here, studies were conducted on a Na(+)(Li(+))/H(+) antiporter, NhaD, from the soda lake haloalkaliphile Alkalimonas amylolytica. The activity profile of A. amylolytica NhaD at different pH values and Na(+) concentrations reflects its unique natural habitat. In membrane vesicles from antiporter-deficient Escherichia coli EP432 (DeltanhaA DeltanhaB), the pH optimum for NhaD-dependent Na(+)(Li(+))/H(+) antiport was at least 9.5, the highest pH that could be tested; no activity was observed at pH < or =8.5. NhaD supported low Na(+)/H(+) antiport activity at pH 9.5 that was detectable over a range of Na(+) concentrations from 10 mM to at least 800 mM, with a 600 mM optimum. Although A. amylolytica nhaD was isolated by complementing the Li(+) sensitivity of the triple mutant E. coli strain KNabc (DeltanhaA DeltanhaB DeltachaA), sustained propagation of nhaD-bearing plasmids in this strain resulted in a glycine (Gly(327))-->serine mutation in a putative cytoplasmic loop of the mutant transporter. The altered activity profile of NhaD-G327S appears to be adaptive to the E. coli setting: a much higher activity than wild-type NhaD at Na(+) concentrations up to 200 mM but lower activity at 400 to 600 mM Na(+), with a pH optimum and minimal pH for activity lower than those of wild-type NhaD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号