首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26314篇
  免费   1977篇
  国内免费   13篇
  2023年   69篇
  2022年   77篇
  2021年   499篇
  2020年   318篇
  2019年   394篇
  2018年   670篇
  2017年   520篇
  2016年   871篇
  2015年   1363篇
  2014年   1541篇
  2013年   1740篇
  2012年   2307篇
  2011年   2084篇
  2010年   1425篇
  2009年   1195篇
  2008年   1693篇
  2007年   1528篇
  2006年   1381篇
  2005年   1222篇
  2004年   1211篇
  2003年   1009篇
  2002年   931篇
  2001年   724篇
  2000年   714篇
  1999年   475篇
  1998年   207篇
  1997年   161篇
  1996年   143篇
  1995年   107篇
  1994年   103篇
  1993年   79篇
  1992年   185篇
  1991年   147篇
  1990年   112篇
  1989年   122篇
  1988年   93篇
  1987年   80篇
  1986年   86篇
  1985年   67篇
  1984年   60篇
  1983年   49篇
  1982年   39篇
  1981年   39篇
  1979年   28篇
  1978年   35篇
  1976年   37篇
  1975年   33篇
  1973年   39篇
  1971年   27篇
  1969年   28篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
991.
992.
MAPK activities, including JNK, p38, and ERK, are markedly enhanced after ischemia in vivo and chemical anoxia in vitro. The relative extent of JNK, p38, or ERK activation has been proposed to determine cell fate after injury. A mouse model was established in which prior exposure to ischemia protected against a second ischemic insult imposed 8 or 15 days later. In contrast to what was observed after 30 min of bilateral ischemia, when a second period of ischemia of 30- or 35-min duration was imposed 8 days later, there was no subsequent increase in plasma creatinine, decrease in glomerular filtration rate, or increase in fractional excretion of sodium. A shorter period of prior ischemia (15 min) was partially protective against subsequent ischemic injury 8 days later. Unilateral ischemia was also protective against a subsequent ischemic insult to the same kidney, revealing that systemic uremia is not necessary for protection. The ischemia-related activation of JNK and p38 and outer medullary vascular congestion were markedly mitigated by prior exposure to ischemia, whereas preconditioning had no effect on post-ischemic activation of ERK1/2. The phosphorylation of MKK7, MKK4, and MKK3/6, upstream activators of JNK and p38, was markedly reduced by ischemic preconditioning, whereas the post-ischemic phosphorylation of MEK1/2, the upstream activator of ERK1/2, was unaffected by preconditioning. Pre- and post-ischemic HSP-25 levels were much higher in the preconditioned kidney. In summary, post-ischemic JNK and p38 (but not ERK1/2) activation was markedly reduced in a model of kidney ischemic preconditioning that was established in the mouse. The reduction in JNK and p38 activation can be accounted for by reduced activation of upstream MAPK kinases. The post-ischemic activation patterns of MAPKs may explain the remarkable protection against ischemic injury observed in this model.  相似文献   
993.
HRC (histidine-rich Ca(2+) binding protein) has been identified from skeletal and cardiac muscle and shown to bind Ca(2+) with high capacity and low affinity. While HRC resides in the lumen of the sarcoplasmic reticulum, the physiological function of HRC is largely unknown. In the present study, we have performed co-immunoprecipitation experiments and show that HRC binds directly to triadin, which is an integral membrane protein of the sarcoplasmic reticulum. Using a fusion protein binding assay, we further identified the histidine-rich acidic repeats of HRC as responsible for the binding of HRC to triadin. These motifs may represent a novel protein-protein interaction domain. The HRC binding domain of triadin was also localized by fusion protein binding assay to the lumenal region containing the KEKE motif that was previously shown to be involved in the binding of triadin to calsequestrin. Notably, the interaction of HRC and triadin is Ca(2+)-sensitive. Our data suggest that HRC may play a role in the regulation of Ca(2+) release from the sarcoplasmic reticulum by interaction with triadin.  相似文献   
994.
Actin directly interacts with phospholipase D, inhibiting its activity   总被引:8,自引:0,他引:8  
Mammalian phospholipase D (PLD) plays a key role in several signal transduction pathways and is involved in many diverse functions. To elucidate the complex molecular regulation of PLD, we investigated PLD-binding proteins obtained from rat brain extract. Here we report that a 43-kDa protein in the rat brain, beta-actin, acts as a major PLD2 direct-binding protein as revealed by peptide mass fingerprinting in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. We also determined that the region between amino acids 613 and 723 of PLD2 is required for the direct binding of beta-actin, using bacterially expressed glutathione S-transferase fusion proteins of PLD2 fragments. Intriguingly, purified beta-actin potently inhibited both phosphatidylinositol-4,5-bisphosphate- and oleate-dependent PLD2 activities in a concentration-dependent manner (IC50 = 5 nm). In a previous paper, we reported that alpha-actinin inhibited PLD2 activity in an interaction-dependent and an ADP-ribosylation factor 1 (ARF1)-reversible manner (Park, J. B., Kim, J. H., Kim, Y., Ha, S. H., Kim, J. H., Yoo, J.-S., Du, G., Frohman, M. A., Suh, P.-G., and Ryu, S. H. (2000) J. Biol. Chem. 275, 21295-21301). In vitro binding analyses showed that beta-actin could displace alpha-actinin binding to PLD2, demonstrating independent interaction between cytoskeletal proteins and PLD2. Furthermore, ARF1 could steer the PLD2 activity in a positive direction regardless of the inhibitory effect of beta-actin on PLD2. We also observed that beta-actin regulates PLD1 and PLD2 with similar binding and inhibitory potencies. Immunocytochemical and co-immunoprecipitation studies demonstrated the in vivo interaction between the two PLD isozymes and actin in cells. Taken together, these results suggest that the regulation of PLD by cytoskeletal proteins, beta-actin and alpha-actinin, and ARF1 may play an important role in cytoskeleton-related PLD functions.  相似文献   
995.
A cDNA coding thioredoxin (TRX) was isolated from a cDNA library of Schizosaccharomyces pombe by colony hybridization. The 438 bp EcoRI fragment, which was detected by Southern hybridization, reveals an open reading frame which encodes a protein of 103 amino acids. The genomic DNA encoding TRX was also isolated from S. pombe chromosomal DNA using PCR. The cloned sequence contains 1795 bp and encodes a protein of 103 amino acids. However, the C-terminal region obtained from the cDNA clone is -Val-Arg-Leu-Asn-Arg-Ser-Leu, whereas the C-terminal region deduced from the genomic DNA appears to contain -Ala-Ser-Ile-Lys-Ala-Asn-Leu. This indicates that S. pombe cells contain two kinds of TRX genes which have dissimilar amino acid sequences only at the C-terminal regions. The heterologous TRX 1C produced from the cDNA clone could be used as a subunit of T7 DNA polymerase, while the TRX 1G from the genomic DNA could not. The upstream sequence and the region encoding the N-terminal 18 amino acids of the genomic DNA were fused into the promoterless beta-galactosidase gene of the shuttle vector YEp357 to generate the fusion plasmid pYKT24. Synthesis of beta-galactosidase from the fusion plasmid was found to be enhanced by hydrogen peroxide, menadione and aluminum chloride. It indicates that the expression of the cloned TRX gene is induced by oxidative stress.  相似文献   
996.
The species *OH or H2O2 are produced by both metal-catalyzed oxidation (MCO) of reducing equivalents and gamma-irradiation. Intact or Cys-34-modified human serum albumin (HSA) was significantly degraded in the MCO system containing dithiothreitol (DTT) as electron donor, but as long as it lasted, HSA prohibited *OH or H2O2 from initiating molecular damage of DNA. However, in the GSH and ascorbate (nonthiol) MCO system, HSA was not sacrificially degraded, and indeed accelerated the formation of DNA strand breaks. In the y-irradiation system producing *OH from H2O, only DTT attenuated the generation of DNA strand breaks by HSA. It did not degrade more H2O2 in the presence of reduced GSH (thiol-linked peroxidase) than in its absence. Therefore it would seem that in an MCO system, the antioxidant activity of HSA depends on the effectiveness of reducing equivalents to induce exposure of a functional group scavenging the *OH or H2O2 species, by reduction of its disulfide-bonds. In the presence of DTT, disulfide bonds in HSA were quantitatively reduced to cysteinyl residues but not significantly reduced by ascorbate or GSH. In conclusion, the antioxidant activity of HSA in the D  相似文献   
997.
The Rkp1/Cpc2, a fission yeast RACK1 homolog, interacted with Pck2, one of the known PKC homologs, in vivo and in vitro. The rkp1-deletion mutants (Deltarkp1) are elongated and the pck2-deletion mutant (Deltapck2) showed abnormal morphology. The double-deletion mutant (Deltarkp1Deltapck2) showed more aberrant cell shapes and was sensitive to high salt concentration. Both Deltarkp1 and Deltapck2 cells were sensitive to latrunculin B (Lat B) which inhibits actin polymerization. The cells expressing the human RACK1 homolog complemented the latrunculin B sensitivity of Deltarkp1 indicating that human RACK1 is a functional homolog of Rkp1/Cpc2. We propose that Rkp1/Cpc2 may function as a receptor for Pck2 in the regulation of actin cytoskeleton organization during cell wall synthesis and morphogenesis of Schizosaccharomyces pombe.  相似文献   
998.
999.
Cytoplasmic peptide:N-glycanase (PNGase) is a de-N-glycosylating enzyme which may be involved in the proteasome-dependent pathway for degradation of misfolded glycoproteins formed in the endoplasmic reticulum (ER) that are exported into the cytoplasm. A cytoplasmic PNGase found in Saccharomyces cerevisiae, Png1p, is widely distributed in higher eukaryotes as well as in yeast (Suzuki, T., et al. J. Cell Biol. 149, 1039-1051, 2000). The recently uncovered complete genome sequence of Arabidopsis thaliana prompted us to search for the protein homologue of Png1p in this organism. Interestingly, when the mouse Png1p homologue sequence was used as a query, not only a Png1p homologue containing a transglutaminase-like domain that is believed to contain a catalytic triad for PNGase activity, but also four proteins which had a domain of 46 amino acids in length that exhibited significant similarity to the N-terminus of mouse Png1p were identified. Moreover, three of these homologous proteins were also found to possess a UBA or UBX domain, which are found in various proteins involved in the ubiquitin-related pathway. We name this newly found homologous region the PUB (Peptide:N-glycanase/UBA or UBX-containing proteins) domain and propose that this domain may mediate protein-protein interactions.  相似文献   
1000.
In vitro cellular senescence of human diploid fibroblast has been a good model for aging research, which shows similar phenotypes to in vivo aging. Gene expression profiling would provide an insight to understand the mechanism of senescence. Using cDNA microarray containing 384 known genes, we compared the expression profiles of three different types of aging models: replicative senescence, fibroblasts from progeria or from elderly donor. Although all of them showed senescence phenotypes, distinct sets of genes were altered in each group. Pairwise plots or cluster analysis of activation fold of gene expression revealed closer relationships between fibroblasts from progeria or from old individual, but not between replicative senescence fibroblasts and either models. Differential expression pattern of several genes were confirmed by RT-PCR. We suggest that the replicative senescence model might behave differently to other types of aging models due to the distinct gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号