首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   33篇
  国内免费   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   16篇
  2015年   30篇
  2014年   22篇
  2013年   25篇
  2012年   29篇
  2011年   29篇
  2010年   10篇
  2009年   24篇
  2008年   25篇
  2007年   15篇
  2006年   20篇
  2005年   11篇
  2004年   9篇
  2003年   12篇
  2002年   11篇
  2001年   6篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有360条查询结果,搜索用时 15 毫秒
1.
The human immune system is a tightly regulated network that protects the host from disease. An important aspect of this is the balance between pro‐inflammatory Th17 cells and anti‐inflammatory T regulatory (Treg) cells in maintaining immune homeostasis. Foxp3+ Treg are critical for sustaining immune tolerance through IL‐10 and transforming growth factor‐β while related orphan receptor‐γt+ Th17 cells promote immunopathology and auto‐inflammatory diseases through the actions of IL‐17A, IL‐21 and IL‐22. Therefore, imbalance between Treg and Th17 cells can result in serious pathology in many organs and tissues. Recently, certain IL‐17‐producing cells have been found to be protective against infectious disease, particularly in relation to extracellular bacteria such Streptococcus pneumoniae; a number of other novel IL‐17‐secreting cell populations have also been reported to protect against a variety of other pathogens. In this mini‐review, the dual roles of Treg and Th17 cells are discussed in the context of autoimmunity and infections, highlighting recent advances in the field. Development of novel strategies specifically designed to target these critical immune response pathways will become increasingly important in maintenance of human health.  相似文献   
2.
3.
4.
Recent studies demonstrated that the antihypertensive drug Valsartan improved spatial and episodic memory in mouse models of Alzheimer’s Disease (AD) and human subjects with hypertension. However, the molecular mechanism by which Valsartan can regulate cognitive function is still unknown. Here, we investigated the effect of Valsartan on dendritic spine formation in primary hippocampal neurons, which is correlated with learning and memory. Interestingly, we found that Valsartan promotes spinogenesis in developing and mature neurons. In addition, we found that Valsartan increases the puncta number of PSD-95 and trends toward an increase in the puncta number of synaptophysin. Moreover, Valsartan increased the cell surface levels of AMPA receptors and selectively altered the levels of spinogenesis-related proteins, including CaMKIIα and phospho-CDK5. These data suggest that Valsartan may promote spinogenesis by enhancing AMPA receptor trafficking and synaptic plasticity signaling.  相似文献   
5.
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory.  相似文献   
6.
7.
8.
Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37–73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.  相似文献   
9.
The thermodynamic stability of a protein plays an important role during evolution and adaptation in order to maintain a folded and active conformation. p53 is a tumour suppressor involved in the regulation of numerous genes. Human p53 has an unusually low thermodynamic stability and is frequently inactivated by oncogenic missense mutations. Here, we examined the thermodynamic and kinetic stability of p53 DNA binding domains from selected invertebrate and vertebrate species by differential scanning calorimetry and equilibrium urea denaturation. There is a correlation in the apparent melting temperature of p53 with the body temperature of homeotherm vertebrates. We found that p53 from these organisms has a half-life for spontaneous unfolding at organismal body temperature of 10-20 min. We also found that p53 from invertebrates has higher stability, bearing more resemblance towards p63 and p73 from humans. Using structure-guided mutagenesis on the human p53 scaffold, we demonstrated that the amino acid changes on the protein surface and in the protein interior lead to the elevated stability of p53 orthologs. We propose a model in which the p53 DNA binding domain has been shaped by the complex interplay of different selective pressures and underwent adaptive evolution leading to pronounced effects on its stability. p53 from vertebrates has evolved to have a low thermodynamic stability and similarly short spontaneous half-life at organismal body temperature, which is related to function.  相似文献   
10.
The noninvasive imaging of dendritic cells (DCs) migrated into lymph nodes (LNs) can provide helpful information on designing DCs-based immunotherapeutic strategies. This study is to investigate the influence of transduction of human ferritin heavy chain (FTH) and green fluorescence protein (GFP) genes on inherent properties of DCs, and the feasibility of FTH as a magnetic resonance imaging (MRI) reporter gene to track DCs migration into LNs. FTH-DCs were established by the introduction of FTH and GFP genes into the DC cell line (DC2.4) using lentivirus. The changes in the rate of MRI signal decay (R2*) resulting from FTH transduction were analyzed in cell phantoms as well as popliteal LN of mice after subcutaneous injection of those cells into hind limb foot pad by using a multiple gradient echo sequence on a 9.4 T MR scanner. The transduction of FTH and GFP did not influence the proliferation and migration abilities of DCs. The expression of co-stimulatory molecules (CD40, CD80 and CD86) in FTH-DCs was similar to that of DCs. FTH-DCs exhibited increased iron storage capacity, and displayed a significantly higher transverse relaxation rate (R2*) as compared to DCs in phantom. LNs with FTH-DCs exhibited negative contrast, leading to a high R2* in both in vivo and ex vivo T2*-weighted images compared to DCs. On histological analysis FTH-DCs migrated to the subcapsular sinus and the T cell zone of LN, where they highly expressed CD25 to bind and stimulate T cells. Our study addresses the feasibility of FTH as an MRI reporter gene to track DCs migration into LNs without alteration of their inherent properties. This study suggests that FTH-based MRI could be a useful technique to longitudinally monitor DCs and evaluate the therapeutic efficacy of DC-based vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号