首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1739篇
  免费   155篇
  国内免费   1篇
  2023年   5篇
  2022年   5篇
  2021年   26篇
  2020年   18篇
  2019年   18篇
  2018年   30篇
  2017年   27篇
  2016年   35篇
  2015年   85篇
  2014年   88篇
  2013年   91篇
  2012年   104篇
  2011年   92篇
  2010年   69篇
  2009年   72篇
  2008年   103篇
  2007年   105篇
  2006年   111篇
  2005年   112篇
  2004年   97篇
  2003年   93篇
  2002年   90篇
  2001年   79篇
  2000年   70篇
  1999年   60篇
  1998年   18篇
  1997年   14篇
  1996年   13篇
  1995年   13篇
  1994年   13篇
  1993年   9篇
  1992年   21篇
  1991年   13篇
  1990年   15篇
  1989年   11篇
  1988年   7篇
  1987年   6篇
  1986年   9篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1972年   4篇
  1971年   2篇
  1969年   4篇
  1958年   2篇
  1957年   2篇
排序方式: 共有1895条查询结果,搜索用时 15 毫秒
81.
Peptides derived from gp41 effectively block the gp41-mediated cell fusion or HIV infection. A 36-mer (naDP178), 51-mer (C51) and 27-mer peptide (C27) from the membrane proximal region of gp41 have been examined their interaction modes with the coiled-coil motif of gp41 presented in thioredoxin (Trx-N) or the bacterially expressed ectodomain of gp41 (Ec-gp41ec). All of these peptides effectively inhibited the gp41-mediated membrane fusion, however, they showed distinct interaction modes with Ec-gp41ec or Trx-N. C51 peptide bound tightly to Trx-N, and it increased the solubility of Ec-gp41ec. naDP178 showed very weak binding affinity to Trx-N, however, it effectively solubilized Ec-gp41ec. In contrast, C27 peptide showed significant binding to Trx-N; however, it did not affect the solubility of Ec-gp41ec. These interaction modes of C-peptides were assumed to be related to their different inhibitory mechanism against gp41-mediated cell fusion.  相似文献   
82.
Y Kim  J M Han  J B Park  S D Lee  Y S Oh  C Chung  T G Lee  J H Kim  S K Park  J S Yoo  P G Suh  S H Ryu 《Biochemistry》1999,38(32):10344-10351
Protein kinase C (PKC) is an important regulator of phospholipase D1 (PLD1). Currently there is some controversy about a phosphorylation-dependent or -independent mechanism of the activation of PLD1 by PKC. To solve this problem, we examined whether PLD1 is phosphorylated by PKC in vivo. For the first time, we have now identified multiple basal phophopeptides and multiple phorbol myristate acetate (PMA) induced phosphopeptides of endogenous PLD1 in 3Y1 cells as well as of transiently expressed PLD1 in COS-7 cells. Down regulation or inhibition of PKC greatly attenuated the PMA-induced phosphorylation as well as the activation of PLD1. In the presence of PMA, purified PLD1 from rat brain was also found to be phosphorylated by PKCalpha in vitro at multiple sites generating seven distinct tryptic phosphopeptides. Four phosphopeptides generated in vivo and in vitro correlated well with each other, suggesting direct phosphorylation of PLD1 by PKCalpha in the cells. Serine 2, threonine 147, and serine 561 were identified as phosphorylation sites, and by mutation of these residues to alanine these residues were proven to be specific phosphorylation sites in vivo. Interestingly, threonine 147 is located in the PX domain and serine 561 is in the negative regulatory "loop" region of PLD1. Mutation of serine 2, threonine 147, or serine 561 significantly reduced PMA-induced PLD1 activity. These results strongly suggest that phosphorylation plays a pivotal role in PLD1 regulation in vivo.  相似文献   
83.
Song HK  Sohn SH  Suh SW 《The EMBO journal》1999,18(5):1104-1113
Bacteriophage T4 deoxycytidylate hydroxymethylase (EC 2.1.2.8), a homodimer of 246-residue subunits, catalyzes hydroxymethylation of the cytosine base in deoxycytidylate (dCMP) to produce 5-hydroxymethyl-dCMP. It forms part of a phage DNA protection system and appears to function in vivo as a component of a multienzyme complex called deoxyribonucleoside triphosphate (dNTP) synthetase. We have determined its crystal structure in the presence of the substrate dCMP at 1.6 A resolution. The structure reveals a subunit fold and a dimerization pattern in common with thymidylate synthases, despite low (approximately 20%) sequence identity. Among the residues that form the dCMP binding site, those interacting with the sugar and phosphate are arranged in a configuration similar to the deoxyuridylate binding site of thymidylate synthases. However, the residues interacting directly or indirectly with the cytosine base show a more divergent structure and the presumed folate cofactor binding site is more open. Our structure reveals a water molecule properly positioned near C-6 of cytosine to add to the C-7 methylene intermediate during the last step of hydroxymethylation. On the basis of sequence comparison and crystal packing analysis, a hypothetical model for the interaction between T4 deoxycytidylate hydroxymethylase and T4 thymidylate synthase in the dNTP-synthesizing complex has been built.  相似文献   
84.
85.
86.
87.
Alder (Alnus glutinosa) and more than 200 angiosperms that encompass 24 genera are collectively called actinorhizal plants. These plants form a symbiotic relationship with the nitrogen-fixing actinomycete Frankia strain HFPArI3. The plants provide the bacteria with carbon sources in exchange for fixed nitrogen, but this metabolite exchange in actinorhizal nodules has not been well defined. We isolated an alder cDNA from a nodule cDNA library by differential screening with nodule versus root cDNA and found that it encoded a transporter of the PTR (peptide transporter) family, AgDCAT1. AgDCAT1 mRNA was detected only in the nodules and not in other plant organs. Immunolocalization analysis showed that AgDCAT1 protein is localized at the symbiotic interface. The AgDCAT1 substrate was determined by its heterologous expression in two systems. Xenopus laevis oocytes injected with AgDCAT1 cRNA showed an outward current when perfused with malate or succinate, and AgDCAT1 was able to complement a dicarboxylate uptake-deficient Escherichia coli mutant. Using the E. coli system, AgDCAT1 was shown to be a dicarboxylate transporter with a K(m) of 70 microm for malate. It also transported succinate, fumarate, and oxaloacetate. To our knowledge, AgDCAT1 is the first dicarboxylate transporter to be isolated from the nodules of symbiotic plants, and we suggest that it may supply the intracellular bacteria with dicarboxylates as carbon sources.  相似文献   
88.
89.
Effects of green tea polyphenol on preservation of human saphenous vein   总被引:2,自引:0,他引:2  
The potential role of green tea polyphenol (GtPP) in preserving the human saphenous vein was investigated under physiological conditions. The vein segments were incubated for 1, 3, 5, 7 and 14 days, either after 4h of treatment with 1.0mg/ml GtPP or in the presence of GtPP at the same concentration. After incubation, the endothelial cell viability, endothelial nitric oxide synthase (eNOS) expression and the vein histology were evaluated. When the veins were not treated with GtPP, the viability of the endothelial cells was significantly reduced with the progress in the culture time, and none of the cells expressed eNOS after 5 days. Furthermore, severe histological changes and structural damage were observed in the non-treated veins. In contrast, incubating the veins after 4h of GtPP treatment significantly prevented these phenomena. The cellular viability of the GtPP-treated vein was approximately 64% after 7 days, and eNOS expression was maintained up to 40%, compared to that of the fresh vein. The histological observations showed that the vasculature was quite similar to that of the fresh vein. When incubated with GtPP, the vein could also be preserved for 1 week under physiological conditions retaining both its cellular viability (61%) and eNOS expression level (45%) and maintaining its venous structure without any morphological changes. These results demonstrate that GtPP treatment may be a useful method for preserving the HSV.  相似文献   
90.
Lee BI  Kim KH  Park SJ  Eom SH  Song HK  Suh SW 《The EMBO journal》2004,23(10):2029-2038
RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes. The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix-hairpin-helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30-35 angstroms diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号