首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   25篇
  2024年   1篇
  2023年   1篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   11篇
  2014年   17篇
  2013年   20篇
  2012年   30篇
  2011年   23篇
  2010年   14篇
  2009年   11篇
  2008年   20篇
  2007年   11篇
  2006年   27篇
  2005年   20篇
  2004年   23篇
  2003年   21篇
  2002年   17篇
  2001年   8篇
  2000年   13篇
  1999年   13篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   8篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1969年   3篇
  1968年   2篇
  1967年   5篇
排序方式: 共有400条查询结果,搜索用时 814 毫秒
81.
Calpain is a Ca2+-regulated cytosolic protease. Mammals have 14 calpain genes, half of which are predominantly expressed in specific organ(s); the rest are expressed ubiquitously. A defect in calpains causes lethality/pathogenicity, indicating their physiological indispensability. nCL-2/calpain-8a was identified as a stomach-specific calpain, whose physiological functions are unclear. To elucidate these, we characterized nCL-2 in detail. Unexpectedly, nCL-2 was localized strictly to the surface mucus cells in the gastric epithelium and the mucus-secreting goblet cells in the duodenum. Yeast two-hybrid screening identified several nCL-2-interacting molecules. Of these, the beta-subunit of coatomer complex (beta-COP) occurs in the stomach pit cells and is proteolyzed by nCL-2 in vitro. Furthermore, beta-COP and nCL-2 co-expressed in COS7 cells co-localized in the Golgi, and Ca2+-ionophore stimulation caused the proteolysis of beta-COP near the linker region, resulting in the dissociation of beta-COP from the Golgi. These results strongly suggest novel functions for nCL-2 that involve the membrane trafficking of mucus cells via interactions with coat protein.  相似文献   
82.
N-acetylglucosaminyltransferase (GnT)-IV catalyzes the formation of the GlcNAcβ1-4 branch on the GlcNAcβ1-2Manα1-3 arm of the core structure of N-glycans. Two human GnT-IV isozymes (GnT-IVa and GnT-IVb) had been identified, which exhibit different expression profiles among human tissues and cancer cell lines. To clarify the enzymatic properties of the respective enzymes, their kinetic parameters were determined using recombinant full-length enzymes expressed in COS7 cells. The K m of human GnT-IVb for UDP-GlcNAc was estimated to be 0.24 mM, which is 2-fold higher than that of human GnT-IVa. The K m values of GnT-IVb for pyridylaminated (PA) acceptor sugar chains with different branch numbers were 3- to 6-fold higher than those of GnT-IVa. To compare substrate specificities more precisely, we generated recombinant soluble enzymes of human GnT-IVa and GnT-IVb with N-terminal flag tags. Both enzymes showed similar substrate specificities as determined using fourteen PA-sugar chains. They preferred complex-type N-glycans over hybrid-types. Among the complex-type N-glycans tested, the relative activities of both enzymes were increased in proportion to the number of GlcNAc branches on the Man α1-6 arm. The Man α1-6 arm of the acceptors was not essential for their activities because a linear pentasaccharide lacking this arm, GlcNAcβ1-2Manα1-3Manβ1-4GlcNAcβ1-4 GlcNAc-PA, was a substrate for both enzymes. These results indicate that human GnT-IVb exhibits the same acceptor substrate specificities as human GnT-IVa, although GnT-IVb has lower affinities for donors or acceptors than GnT-IVa. This suggests that GnT-IVa is more active than GnT-IVb under physiological conditions and that it primarily contributes to the biosynthesis of N-glycans.  相似文献   
83.
84.
85.
RNA aptamers against bovine prion protein (bPrP) were obtained, most of the obtained aptamers being found to contain the r(GGAGGAGGAGGA) (R12) sequence. Then, it was revealed that R12 binds to both bPrP and its β-isoform with high affinity. Here, we present the structure of R12. This is the first report on the structure of an RNA aptamer against prion protein. R12 forms an intramolecular parallel quadruplex. The quadruplex contains G:G:G:G tetrad and G(:A):G:G(:A):G hexad planes. Two quadruplexes form a dimer through intermolecular hexad–hexad stacking. Two lysine clusters of bPrP have been identified as binding sites for R12. The electrostatic interaction between the uniquely arranged phosphate groups of R12 and the lysine clusters is suggested to be responsible for the affinity of R12 to bPrP. The stacking interaction between the G:G:G:G tetrad planes and tryptophan residues may also contribute to the affinity. One R12 dimer molecule is supposed to simultaneously bind the two lysine clusters of one bPrP molecule, resulting in even higher affinity. The atomic coordinates of R12 would be useful for the development of R12 as a therapeutic agent against prion diseases and Alzheimer''s disease.  相似文献   
86.
Glucocorticoids are known to decrease intracellular ATP levels in the brain. This study was performed to investigate whether corticosterone at physiological levels depresses mitochondrial ATP production by directly acting on mitochondria. Mitochondria were isolated from immortalized hypothalamic GT1-7 neurons. ATP levels were determined using a luciferase–luciferin assay. When malate, α-ketoglutarate or pyruvate was used as a respiration substrate, corticosterone at ≥100 nM decreased ATP production by 10%. In contrast, corticosterone did not affect ATP production when succinate or N,N,N′,N′-tetramethyl-p-phenylenediamine + ascorbate were used. To investigate the specificity of corticosterone inhibition, we examined several steroids. All steroids tested suppressed mitochondrial ATP production by 10% at a concentration of 100 nM, in a manner similar to that of corticosterone. To examine the effects of corticosterone on GT1-7 cell physiology, we incubated GT1-7 cells with t-butyl hydroperoxide (t-BuOOH) with corticosterone. Corticosterone largely enhanced t-BuOOH-induced cell death. These results indicate that corticosterone non-specifically inhibits mitochondrial ATP production by suppressing electron transfer from NADH to the electron transfer chain through complex I. Partial inhibition of mitochondrial ATP production by corticosterone may contribute to oxidative stress-induced cell death.  相似文献   
87.
88.
Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions.  相似文献   
89.
90.

Background

Of all organs and tissues in adult mammals, the brain shows the most limited regeneration and recovery after injury. This is one reason why treating neurological damage such as ischemic injury after stroke presents such a challenge. Here we report a novel mode of regeneration which the slug''s cognitive center, the procerebrum, shows after surgical lesioning in the adult. It is well known that the land slug Limax possesses the capacity to demonstrate conditioned food aversion. This learning ability critically depends on the procerebrum, which is the higher olfactory center in the brain of the terrestrial mollusk.

Principal Findings

In the present study, after a 1-month recovery period post-surgical lesioning of the procerebrum we investigated whether the brain of the slug shows recovery from damage. We found that learning ability, local field potential oscillation, and the number of cells in the procerebrum (PC) all recovered spontaneously within 1 month of bilateral lesioning of the PC. Moreover, neurogenesis was enhanced in the lesioned PC. However, memory acquired before the surgery could not be retrieved 1 month after surgery although the procerebrum had recovered from injury by this time, consistent with the notion that the procerebrum is the storage site of odor-aversion memory, or deeply involved in the memory recall process.

Significance

Our findings are the first to demonstrate that a brain region responsible for the associative memory of an adult organism can spontaneously reconstitute itself, and can recover its function following injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号