首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1994年   2篇
排序方式: 共有43条查询结果,搜索用时 46 毫秒
31.
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is an aldosterone-regulated early response gene product that regulates the activity of several ion transport proteins, most notably that of the epithelial sodium channel (ENaC). Recent evidence has established that SGK1 phosphorylates and inhibits Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), a ubiquitin ligase that decreases cell surface expression of the channel and possibly stimulates its degradation. The mechanistic basis for this SGK1-induced Nedd4-2 inhibition is currently unknown. In this study we show that SGK1-mediated phosphorylation of Nedd4-2 induces its interaction with members of the 14-3-3 family of regulatory proteins. Through functional characterization of Nedd4-2-mutant proteins, we demonstrate that this interaction is required for SGK1-mediated inhibition of Nedd4-2. The concerted action of SGK1 and 14-3-3 appears to disrupt Nedd4-2-mediated ubiquitination of ENaC, thus providing a mechanism by which SGK1 modulates the ENaC-mediated Na(+) current. Finally, the expression pattern of 14-3-3 is also consistent with a functional role in distal nephron Na(+) transport. These results demonstrate a novel, physiologically significant role for 14-3-3 proteins in modulating ubiquitin ligase-dependent pathways in the control of epithelial ion transport.  相似文献   
32.
Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na(+) channel (ENaC). Whereas PI(3,4,5)P(3) directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of gamma-mENaC just following the second trans-membrane domain (residues 569-583) important to PI(3,4,5)P(3) binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P(3), increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P(3) binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P(3). Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within gamma-mENaC as being part of a functional PI(3,4,5)P(3) binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions.  相似文献   
33.
Aldosterone induces the expression of the small G protein K-Ras. Both K-Ras and its 1st effector phosphoinositide 3-OH kinase (PI3-K) are necessary and sufficient for the activation of ENaC increasing channel open probability. The cell signaling mechanism by which K-Ras enhances ENaC activity, however, is uncertain. We demonstrate here that K-Ras significantly activates human ENaC reconstituted in Chinese hamster ovary cells approximately 3-fold. Activation in response to K-Ras was sensitive to the irreversible PI3-K inhibitor wortmannin but not the competitive LY294002 inhibitor of this phospholipid kinase. Similarly, a PI3-K 1st effector-specific Ras mutant (G12:C40) enhanced ENaC activity in a wortmannin but not LY294002 sensitive manner. Constitutively active PI3-K also enhanced ENaC activity but in a wortmannin and LY294002 sensitive manner with the effects of PI3-K and K-Ras not being additive. The activation of ENaC by PI3-K was also sensitive to intracellular GDPbetaS. Constitutively active PI3-K that is incapable of interacting with K-Ras (K227E p110alpha) acted as dominant negative with respect to the regulation of ENaC even in the presence of K-Ras. K-Ras is known to directly interact with PI3-K with aldosterone promoting this interaction. Here we demonstrate that K-Ras also interacts with ENaC through an, as yet, undetermined mechanism. We conclude that K-Ras enhances ENaC activity by localizing PI3-K near the channel and stimulating of PI3-K activity.  相似文献   
34.
35.
Regulation of ion channels by heterotrimeric guanosine triphosphatases (GTPases), activated by heptathelical membrane receptors, has been the focus of several recent reviews. In comparison, regulation of ion channels by small monomeric G proteins, activated by cytoplasmic guanine nucleotide exchange factors, has been less well reviewed. Small G proteins, molecular switches that control the activity of cellular and membrane proteins, regulate a wide variety of cell functions. Many upstream regulators and downstream effectors of small G proteins now have been isolated. Their modes of activation and action are understood. Recently, ion channels were recognized as physiologically important effectors of small GTPases. Recent advances in understanding how small G proteins regulate the intracellular trafficking and activity of ion channels are discussed here. We aim to provide critical insight into physiological control of ion channel function and the biological consequences of regulation of these important proteins by small, monomeric G proteins.  相似文献   
36.
37.
38.
The activity of membrane proteins is controlled, in part, by protein-protein interactions localized to the plasma membrane. In the current study, domains within the epithelial Na(+) channel (ENaC) reactive at the plasma membrane were identified using a novel yeast one-hybrid screen. The cytosolic N terminus of alphaENaC and the cytosolic C termini of alpha-, beta-, and gammaENaC contained domains reactive at the plasma membrane. Fluorescent micrographs of epithelial cells overexpressing fusion proteins of enhanced green fluorescent protein and mENaC cytosolic domains were consistent with those in yeast. A novel membrane reactive domain within the cytosolic C terminus of gamma-mENaC was localized to the 17 amino acids between residues Thr(584)-Pro(600). Two overlapping internalization signals within the C terminus of gamma-mENaC, a WW-binding domain (PY motif) and a tyrosine-based endocytic signal, were additive with respect to decreasing complementation and expression levels of hybrid proteins. Decreases in expression levels of hybrid proteins containing the PY and endocytic motif were reversed with latrunculin A, an inhibitor of endosomal movement. Decreases in complementation and expression levels of hybrid proteins mediated by the combined PY and overlapping endocytic motif proceeded in the absence of established ubiquitination sites within ENaC. In addition, the endocytic motif was active in the absence of the PY motif, demonstrating that these two domains, while possibly interacting, also have discrete functions. The novel domains within the cytosolic N terminus of alphaENaC and the C termini of alpha-, beta-, and gammaENaC identified here are likely to be involved in protein-protein and/or protein-lipid interactions localized to the plasma membrane. We hypothesize that these newly identified domains play a role in modulating ENaC activity.  相似文献   
39.
40.
Epithelial Na(+) channels (ENaCs) are activated by extracellular trypsin or by co-expression with channel-activating proteases, although there is no direct evidence that these proteases activate ENaC by cleaving the channel. We previously demonstrated that the alpha and gamma subunits of ENaC are cleaved during maturation near consensus sites for furin cleavage. Using site-specific mutagenesis of channel subunits, ENaC expression in furin-deficient cells, and furin-specific inhibitors, we now report that ENaC cleavage correlates with channel activity. Channel activity in furin-deficient cells was rescued by expression of furin. Our data provide the first example of a vertebrate ion channel that is a substrate for furin and whose activity is dependent on its proteolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号