首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   19篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   7篇
  2017年   2篇
  2016年   9篇
  2015年   6篇
  2014年   15篇
  2013年   9篇
  2012年   11篇
  2011年   10篇
  2010年   6篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
61.
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414–530) and CC2 (aa 530–630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.  相似文献   
62.
63.

Background

The proteomic analysis of body fluids is a growing technology for the identification of protein biomarkers of disease. Given that Papanicolaou tests (Pap tests) are routinely performed on over 30 million women annually in the U.S. to screen for cervical cancer, we examined the residual Pap test fluid as a source of protein for analysis by mass spectrometry (MS). In the liquid-based Pap test, cervical cells are collected from the ectocervix and placed into an alcohol-based fixative prior to staining and pathologic examination. We hypothesized that proteins shed by cells of the female genital tract can be detected in the Pap test fixative by MS-based proteomic techniques. We examined the feasibility of using residual fluid from discarded Pap tests with cytologically “normal” results to optimize sample preparation for MS analysis. The protein composition of the cell-free Pap test fluid was determined by silver staining of sodium dodecyl sulfate -polyacrylamide gels, and the abundance of serum proteins was examined by Western immunoblot using an antibody against human serum albumin. Both pooled and individual samples were trypsin digested and analyzed by two-dimensional MS/MS. Proteins were identified by searching against the Human Uniprot database, and characterized for localization, function and relative abundance.

Results

The average volume of the residual Pap test fluid was 1.5 ml and the average protein concentration was 0.14 mg/ml. By Western immunoblot we showed that the amount of albumin in each sample was significantly reduced compared to normal serum. By MS/MS, we identified 714 unique proteins in pooled Pap test samples and an average of 431 proteins in individual samples. About 40% of the proteins identified were extracellular or localized to the plasma membrane. Almost 20% of the proteins identified were involved in immunity and defense, characteristic of the healthy cervical-vaginal proteome. By merging the protein sets from the individual and pooled Pap test samples, we created a “Normal Pap test Core Proteome” consisting of 153 proteins.

Conclusions

Residual Pap test fluid contains a sufficient amount of protein for analysis by MS and represents a valuable biospecimen source for the identification of protein biomarkers for gynecological diseases.  相似文献   
64.
The efficiency of dendrosome (a gene porter) was assessed in transferring recombinant human rotavirus VP2 cDNA into A549, a human lung cell line. After gene transferring, transmission electron microscopy showed core-like particles (CLPs) formation in the transfected cells both with dendrosome and lipofectamine porters. In addition, western blotting analysis showed that the expression of VP2 gene was almost equal in the dendrosome and lipofectamine-transfected cells. Also, the cytotoxicity studies revealed that dendrosome had a lower cytotoxicity than lipofectamine. Therefore, our study may introduce dendrosome as a possible carrier for gene transferring into the human lung cell line, especially, for intranasally administration of DNA vaccines.  相似文献   
65.
The Bacillus pumilus SG2 chitinase gene (ChiS) and its truncated form lacking chitin binding (ChBD) and fibronectin type III (FnIII) domains were transformed to Arabidopsis plants and the expression, functionality and antifungal activity of the recombinant proteins were investigated. Results showed that while the two enzyme forms showed almost equal hydrolytic activity toward colloidal chitin, they exhibited a significant difference in antifungal activity. Recombinant ChiS in plant protein extracts displayed a high inhibitory effect on spore germination and radial growth of hyphae in Alternaria brassicicola, Fusarium graminearum and Botrytis cinerea, while the activity of the truncated enzyme was strongly abolished. These findings demonstrate that ChBD and FnIII domains are not necessary for hydrolysis of colloidal chitin but play an important role in hydrolysis of chitin–glucan complex of fungal cell walls. Twenty microgram aliquots of protein extracts from ChiS transgenic lines displayed strong antifungal activity causing up to 80% decrease in fungal spore germination. This is the first report of a Bacillus pumilus chitinase expressed in plant system.  相似文献   
66.
Recently we reported that ferric reducing ability of plasma (FRAP) assay, as an index of total antioxidant activity, increases in growing rats in response to high dose of vitamin K. In this study, it was found that acetaminophen (APAP) can cause elevation in FRAP in suckling and adult rats. This study was initiated to assess the contribution of individual antioxidant factors on elevation in FRAP. A surge in FRAP, 1 h after high dose APAP (250 or 450 mg/kg BW) administration was recorded in both young as well as adults. Whereas, low dose drug (25 mg/kg) failed to alter FRAP in both the age groups. Time-course studies show that drug-dependent elevation in FRAP begin rapidly, reaching a maximum at 1 h (> 500%). Increased FRAP was associated with a marked increase (∼14-fold) in plasma bilirubin, 6 h after drug administration at 450 mg/kg only in suckling rats. Similarly, APAP-related increase in superoxide dismutase activity in erythrocytes was limited to young rats of both the age groups. Other factors measured during this period viz., plasma uric acid, bilirubin and total protein together with catalase activity of erythrocytes remained unchanged in treated rats. Under these circumstances, APAP-related depletion in liver glutathione was almost similar in both the age groups. During a 12 h study, the concentration of lipid peroxidation products, in liver of treated groups remained within the levels of respective controls. The endpoint hepatotoxic effects of APAP was almost similar in both the age groups, suggesting that like adults, immature rats can cope with toxic effects of APAP owing to their drug-dependent induction in certain antioxidant factors.  相似文献   
67.
The Rho family of small GTPases plays a central role in intracellular signal transduction, particularly in reorganization of the actin cytoskeleton. Rho activity induces cell contractility, whereas Rac promotes cellular protrusion, which counteracts Rho signaling. In this regard, the reciprocal balance between these GTPases determines cell morphology and migratory behavior. Here we demonstrate that Tiam1/Rac1 signaling is able to antagonize Rho activity directly at the GTPase level in COS-7 cells. p190-RhoGAP plays a central regulatory role in this signaling pathway. Interfering with its activation by Src-kinase-dependent tyrosine phosphorylation or its recruitment to the membrane through interaction with the SH2 domains of p120-RasGAP blocks the Tiam1-mediated rapid downregulation of Rho. This process is mediated by Rac1, but not by Rac2 or Rac3 isoforms. Our data provide evidence for a biochemical pathway of the reciprocal regulation of two related small GTPases, which are key elements in cell migration.  相似文献   
68.
The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.  相似文献   
69.

Background  

Electrocardiography (ECG) signal is a primary criterion for medical practitioners to diagnose heart diseases. The development of a reliable, accurate, non-invasive and robust method for arrhythmia detection could assists cardiologists in the study of patients with heart diseases. This paper provides a method for morphological heart arrhythmia detection which might have different shapes in one category and also different morphologies in relation to the patients. The distinctive property of this method in addition to accuracy is the robustness of that, in presence of Gaussian noise, time and amplitude shift.  相似文献   
70.
While fatty acids (FAs) released by white adipose tissue (WAT) provide energy for other organs, lipolysis is also critical in brown adipose tissue (BAT), generating FAs for oxidation and UCP-1 activation for thermogenesis. Here we show that adipose-specific ablation of desnutrin/ATGL in mice converts BAT to a WAT-like tissue. These mice exhibit severely impaired thermogenesis with increased expression of WAT-enriched genes but decreased BAT genes, including UCP-1 with lower PPARα binding to its promoter, revealing the requirement of desnutrin-catalyzed lipolysis for maintaining a BAT phenotype. We also show that desnutrin is phosphorylated by AMPK at S406, increasing TAG hydrolase activity, and provide evidence for increased lipolysis by AMPK phosphorylation of desnutrin in adipocytes and in?vivo. Despite adiposity and impaired BAT function, desnutrin-ASKO mice have improved hepatic insulin sensitivity with lower DAG levels. Overall, desnutrin is phosphorylated/activated by AMPK to increase lipolysis and brings FA oxidation and UCP-1 induction for thermogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号