首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1441篇
  免费   84篇
  国内免费   1篇
  2021年   12篇
  2020年   2篇
  2019年   9篇
  2018年   8篇
  2017年   11篇
  2016年   21篇
  2015年   32篇
  2014年   36篇
  2013年   107篇
  2012年   76篇
  2011年   79篇
  2010年   50篇
  2009年   59篇
  2008年   76篇
  2007年   89篇
  2006年   72篇
  2005年   76篇
  2004年   83篇
  2003年   71篇
  2002年   63篇
  2001年   54篇
  2000年   36篇
  1999年   35篇
  1998年   12篇
  1997年   20篇
  1996年   11篇
  1995年   21篇
  1994年   11篇
  1993年   17篇
  1992年   39篇
  1991年   32篇
  1990年   26篇
  1989年   28篇
  1988年   31篇
  1987年   14篇
  1986年   19篇
  1985年   14篇
  1984年   8篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   5篇
  1979年   10篇
  1978年   3篇
  1974年   2篇
  1973年   10篇
  1972年   3篇
  1970年   2篇
  1967年   1篇
  1966年   2篇
排序方式: 共有1526条查询结果,搜索用时 312 毫秒
991.
992.
Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori) also show such a response to the density of cabbage white (Pieris rapae) larvae and attract more (naive) parasitoids (Cotesia glomerata) when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella) larvae, seedlings of the same variety (cv Shikidori) release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis) of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale) respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala) is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata) as a “cry wolf” signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore''s enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.  相似文献   
993.
The ATP-binding cassette transporter ABCA3 mediates uptake of choline-phospholipids into intracellular vesicles and is essential for surfactant metabolism in lung alveolar type II cells. We have shown previously that ABCA3 mutations in fatal surfactant deficiency impair intracellular localization or ATP hydrolysis of ABCA3 protein. However, the mechanisms underlying the less severe phenotype of patients with ABCA3 mutation are unclear. In this study, we characterized ABCA3 mutant proteins identified in pediatric interstitial lung disease (pILD). E292V (intracellular loop 1), E690K (adjacent to Walker B motif in nucleotide binding domain 1), and T1114M (8th putative transmembrane segment) mutant proteins are localized mainly in intracellular vesicle membranes as wild-type protein. Lipid analysis and sucrose gradient fractionation revealed that the transport function of E292V mutant protein is moderately preserved, whereas those of E690K and T1114M mutant proteins are severely impaired. Vanadate-induced nucleotide trapping and photoaffinity labeling of wild-type and mutant proteins using 8-azido-[(32)P]ATP revealed an aberrant catalytic cycle in these mutant proteins. These results demonstrate the importance of a functional catalytic cycle in lipid transport of ABCA3 and suggest a pathophysiological mechanism of pILD due to ABCA3 mutation.  相似文献   
994.
A record of the history of the Earth is hidden in the Earth's crust, like the annual rings of an old tree. From very limited records retrieved from deep underground, one can infer the geographical, geological, and biological events that occurred throughout Earth's history. Here we report the discovery of vertically shifted community structures of Archaea in a typical oceanic subseafloor core sample (1410 cm long) recovered from the West Philippine Basin at a depth of 5719 m. Beneath a surface community of ubiquitous deep-sea archaea (marine crenarchaeotic group I; MGI), an unusual archaeal community consisting of extremophilic archaea, such as extreme halophiles and hyperthermophiles, was present. These organisms could not be cultivated, and may be microbial relicts more than 2 million years old. Our discovery of archaeal rDNA in this core sample, probably associated with the past terrestrial volcanic and submarine hydrothermal activities surrounding the West Philippine Basin, serves as potential geomicrobiological evidence reflecting novel records of geologic thermal events in the Pleistocene period concealed in the deep-sea subseafloor.  相似文献   
995.
Distribution of Archaea in a Black Smoker Chimney Structure   总被引:18,自引:5,他引:13       下载免费PDF全文
Archaeal community structures in microhabitats in a deep-sea hydrothermal vent chimney structure were evaluated through the combined use of culture-independent molecular analyses and enrichment culture methods. A black smoker chimney was obtained from the PACMANUS site in the Manus Basin near Papua New Guinea, and subsamples were obtained from vertical and horizontal sections. The elemental composition of the chimney was analyzed in different subsamples by scanning electron microscopy and energy-dispersive X-ray spectroscopy, indicating that zinc and sulfur were major components while an increased amount of elemental oxygen in exterior materials represented the presence of oxidized materials on the outer surface of the chimney. Terminal restriction fragment length polymorphism analysis revealed that a shift in archaeal ribotype structure occurred in the chimney structure. Through sequencing of ribosomal DNA (rDNA) clones from archaeal rDNA clone libraries, it was demonstrated that the archaeal communities in the chimney structure consisted for the most part of hyperthermophilic members and extreme halophiles and that the distribution of such extremophiles in different microhabitats of the chimney varied. The results of the culture-dependent analysis supported in part the view that changes in archaeal community structures in these microhabitats are associated with the geochemical and physical dynamics in the black smoker chimney.  相似文献   
996.
Class 1 release factor in eukaryotes (eRF1) recognizes stop codons and promotes peptide release from the ribosome. The ‘molecular mimicry’ hypothesis suggests that domain 1 of eRF1 is analogous to the tRNA anticodon stem–loop. Recent studies strongly support this hypothesis and several models for specific interactions between stop codons and residues in domain 1 have been proposed. In this study we have sequenced and identified novel eRF1 sequences across a wide diversity of eukaryotes and re-evaluated the codon-binding site by bioinformatic analyses of a large eRF1 dataset. Analyses of the eRF1 structure combined with estimates of evolutionary rates at amino acid sites allow us to define the residues that are under structural (i.e. those involved in intramolecular interactions) versus non-structural selective constraints. Furthermore, we have re-assessed convergent substitutions in the ciliate variant code eRF1s using maximum likelihood-based phylogenetic approaches. Our results favor the model proposed by Bertram et al. that stop codons bind to three ‘cavities’ on the protein surface, although we suggest that the stop codon may bind in the opposite orientation to the original model. We assess the feasibility of this alternative binding orientation with a triplet stop codon and the eRF1 domain 1 structures using molecular modeling techniques.  相似文献   
997.
The carbon and energy metabolisms of a variety of cultured chemolithoautotrophic Epsilonproteobacteria from deep-sea hydrothermal environments were characterized by both enzymatic and genetic analyses. All the Epsilonproteobacteria tested had all three key reductive tricarboxylic acid (rTCA) cycle enzymatic activities—ATP-dependent citrate lyase, pyruvate:ferredoxin oxidoreductase, and 2-oxoglutarate:ferredoxin oxidoreductase—while they had no ribulose 1,5-bisphosphate carboxylase (RubisCO) activity, the key enzyme in the Calvin-Benson cycle. These results paralleled the successful amplification of the key rTCA cycle genes aclB, porAB, and oorAB and the lack of success at amplifying the form I and II RubisCO genes, cbbL and cbbM. The combination of enzymatic and genetic analyses demonstrates that the Epsilonproteobacteria tested use the rTCA cycle for carbon assimilation. The energy metabolisms of deep-sea Epsilonproteobacteria were also well specified by the enzymatic and genetic characterization: hydrogen-oxidizing strains had evident soluble acceptor:methyl viologen hydrogenase activity and hydrogen uptake hydrogenase genes (hyn operon), while sulfur-oxidizing strains lacked both the enzyme activity and the genes. Although the energy metabolism of reduced sulfur compounds was not genetically analyzed and was not fully clarified, sulfur-oxidizing Epsilonproteobacteria showed enzyme activity of a potential sulfite:acceptor oxidoreductase for a direct oxidation pathway to sulfate but no activity of AMP-dependent adenosine 5′-phosphate sulfate reductase for a indirect oxidation pathway. No activity of thiosulfate-oxidizing enzymes was detected. The enzymatic and genetic characteristics described here were consistent with cellular carbon and energy metabolisms and suggest that molecular tools may have great potential for in situ elucidation of the ecophysiological roles of deep-sea Epsilonproteobacteria.  相似文献   
998.
Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.  相似文献   
999.
Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (~34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the δ-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 × 106 copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 × 106 copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in γ-Proteobacteria and had a high copy number of mxaF (7.1 × 106 copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 × 102 copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and sulfate strongly supported the notion that in this zone both aerobic methane oxidation and anaerobic methane oxidation, as well as methanogenesis, occur.  相似文献   
1000.
An electricity-generating bacterium, Geobacter sulfurreducens PCA, was inoculated into a single-chamber, air-cathode microbial fuel cell (MFC) in order to determine the maximum electron transfer rate from bacteria to the anode. To create anodic reaction-limiting conditions, where electron transfer from bacteria to the anode is the rate-limiting step, anodes with electrogenic biofilms were reduced in size and tests were conducted using anodes of six different sizes. The smallest anode (7 cm2, or 1.5 times larger than the cathode) achieved an anodic reaction-limiting condition as a result of a limited mass of bacteria on the electrode. Under these conditions, the limiting current density reached a maximum of 1,530 mA/m2, and power density reached a maximum of 461 mW/m2. Per-biomass efficiency of the electron transfer rate was constant at 32 fmol cell−1 day−1 (178 μmol g of protein−1 min−1), a rate comparable to that with solid iron as the electron acceptor but lower than rates achieved with fumarate or soluble iron. In comparison, an enriched electricity-generating consortium reached 374 μmol g of protein−1 min−1 under the same conditions, suggesting that the consortium had a much greater capacity for electrode reduction. These results demonstrate that per-biomass electrode reduction rates (calculated by current density and biomass density on the anode) can be used to help make better comparisons of electrogenic activity in MFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号