首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   14篇
  国内免费   1篇
  2023年   2篇
  2021年   6篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   13篇
  2012年   20篇
  2011年   12篇
  2010年   12篇
  2009年   9篇
  2008年   12篇
  2007年   12篇
  2006年   9篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
31.
This paper reports on an investigation of mass transport of blood cells at micro-scale stenosis where local strain-rate micro-gradients trigger platelet aggregation. Using a microfluidic flow focusing platform we investigate the blood flow streams that principally contribute to platelet aggregation under shear micro-gradient conditions. We demonstrate that relatively thin surface streams located at the channel wall are the primary contributor of platelets to the developing aggregate under shear gradient conditions. Furthermore we delineate a role for red blood cell hydrodynamic lift forces in driving enhanced advection of platelets to the stenosis wall and surface of developing aggregates. We show that this novel microfluidic platform can be effectively used to study the role of mass transport phenomena driving platelet recruitment and aggregate formation and believe that this approach will lead to a greater understanding of the mechanisms underlying shear-gradient dependent discoid platelet aggregation in the context of cardiovascular diseases such as acute coronary syndromes and ischemic stroke.  相似文献   
32.
Corals harbor diverse and abundant prokaryotic populations. Bacterial communities residing in the coral mucus layer may be either pathogenic or symbiotic. Some species may produce antibiotics as a method of controlling populations of competing microbial species. The present study characterizes cultivable Pseudoalteromonas sp. isolated from the mucus layer of different coral species from the northern Gulf of Eilat, Red Sea, Israel. Six mucus-associated Pseudoalteromonas spp. obtained from different coral species were screened for antibacterial activity against 23 tester strains. Five of the six Pseudoalteromonas strains demonstrated extracellular antibacterial activity against Gram-positive—but not Gram-negative—tester strains. Active substances secreted into the cell-free supernatant are heat-tolerant and inhibit growth of Bacillus cereus, Staphylococcus aureus, and of ten endogenous Gram-positive marine bacteria isolated from corals. The Pseudoalteromonas spp. isolated from Red sea corals aligned in a phylogenetic tree with previously isolated Pseudoalteromonas spp. of marine origin that demonstrated antimicrobial activity. These results suggest that coral mucus-associated Pseudoalteromonas may play a protective role in the coral holobiont's defense against potential Gram-positive coral pathogens.  相似文献   
33.
Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates.  相似文献   
34.
In this research, we characterized the histopathological impact of dengue virus (serotype DENV-2) infection in livers of BALB/c mice. The mice were infected with different doses of DENV-2 via intraperitoneal injection and liver tissues were processed for histological analyses and variation was documented. In the BALB/c mouse model, typical liver tissues showed regular hepatocyte architecture, with normal endothelial cells surrounding sinusoid capillary. Based on histopathological observations, the liver sections of BALB/c mice infected by DENV-2 exhibited a loss of cell integrity, with a widening of the sinusoidal spaces. There were marked increases in the infiltration of mononuclear cells. The areas of hemorrhage and micro- and macrovesicular steatosis were noted. Necrosis and apoptosis were abundantly present. The hallmark of viral infection, i.e., cytopathic effects, included intracellular edema and vacuole formation, cumulatively led to sinusoidal and lobular collapse in the liver. The histopathological studies on autopsy specimens of fatal human DENV cases are important to shed light on tissue damage for preventive and treatment modalities, in order to manage future DENV infections. In this framework, the method present here on BALB/c mouse model may be used to study not only the effects of infections by other DENV serotypes, but also to investigate the effects of novel drugs, such as recently developed nano-formulations, and the relative recovery ability with intact immune functions of host.  相似文献   
35.
DAP5 is an eIF4G protein previously implicated in mediating cap-independent translation in response to cellular stresses. Here we report that DAP5 is crucial for continuous cell survival in nonstressed cells. The knockdown of endogenous DAP5 induced M phase-specific caspase-dependent apoptosis. Bcl-2 and CDK1 were identified by two independent screens as DAP5 translation targets. Notably, the activity of the Bcl-2 IRES was reduced in DAP5 knockdown cells and a selective shift of Bcl-2 mRNA toward light polysomal fractions was detected. Furthermore, a functional IRES was identified in the 5'UTR of CDK1. At the cellular level, attenuated translation of CDK1 by DAP5 knockdown decreased the phosphorylation of its M phase substrates. Ectopic expression of Bcl-2 or CDK1 proteins partially reduced the extent of caspase activation caused by DAP5 knockdown. Thus, DAP5 is necessary for maintaining cell survival during mitosis by promoting cap-independent translation of at least two prosurvival proteins.  相似文献   
36.
The amyloid-β precursor protein (AβPP) is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-β (Aβ) protein, is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease, Down syndrome, and head injury. We recently reported that this protein, normally associated with neurodegenerative conditions, is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AβPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-β, which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AβPP cleavage by β-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression, an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AβPPα, which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AβPP is normally required for embryonic neurogenesis.The amyloid-β precursor protein (AβPP)5 is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-β (Aβ) protein, is deposited in amyloid plaques in the aged brain, following head injury, and in the neurodegenerative conditions of Alzheimer disease (AD) and Down syndrome (DS). AβPP has structural similarity to growth factors (1) and modulates several important neurotrophic functions, including neuritogenesis, synaptogenesis, and synaptic plasticity (2). The function of AβPP during early embryogenesis and neurogenesis has not been well described.AβPP is processed by at least two pathways, the non-amyloidogenic and amyloidogenic pathways. Non-amyloidogenic processing of AβPP yields secreted AβPPα (sAβPPα), the secreted extracellular domain of AβPP that acts as a growth factor for many cell types and promotes neuritogenesis (3). Amyloidogenic processing of AβPP releases sAβPPβ, the AβPP intracellular domain, and Aβ proteins. The Aβ protein has both neurotoxic and neurotrophic properties (4) dependent on the differentiation state of the neuron; Aβ is neurotoxic to differentiating neurons via a mechanism involving differentiation-associated increases in the phosphorylation of the microtubule-associated protein tau (5) but neurotrophic to undifferentiated embryonic neurons. Evidence supporting a neurotrophic function for Aβ during development include its neurogenic activity toward rat neural stem cells (46). Consistent with these data, two studies have demonstrated increased hippocampal neurogenesis in young transgenic mice overexpressing human APPSw,Ind (7, 8).Recently we reported that human embryonic stem cells (hESCs) express AβPP and that both the stemness of the cells and the pregnancy-associated hormone human chorionic gonadotropin alter AβPP expression (9). These results suggest a functional role for AβPP during early human embryogenesis. To further investigate the function of AβPP and its cleavage products during early embryonic neurogenesis, we examined the expression and processing of this protein and its role in proliferation and differentiation of hESCs into neural precursor cells (NPCs). We found that amyloidogenic processing of AβPP promotes hESC proliferation whereas non-amyloidogenic processing induces hESC differentiation into NPCs. These data reveal an important function for AβPP during early human embryonic neurogenesis. Our data imply that any dysregulation in AβPP processing that leads to altered sAβPPα/Aβ production could result in aberrant neurogenesis as reported in the AD and DS brains.  相似文献   
37.

Background

Aggrecan is the major non-collagenous component of the intervertebral disc. It is a large proteoglycan possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. Its abundance and unique molecular features provide the disc with its osmotic properties and ability to withstand compressive loads. Degradation and loss of aggrecan result in impairment of disc function and the onset of degeneration.

Scope of review

This review summarizes current knowledge concerning the structure and function of aggrecan in the normal intervertebral disc and how and why these change in aging and degenerative disc disease. It also outlines how supplementation with aggrecan or a biomimetic may be of therapeutic value in treating the degenerate disc.

Major conclusions

Aggrecan abundance reaches a plateau in the early twenties, declining thereafter due to proteolysis, mainly by matrix metalloproteinases and aggrecanases, though degradation of hyaluronan and non-enzymic glycation may also participate. Aggrecan loss is an early event in disc degeneration, although it is a lengthy process as degradation products may accumulate in the disc for decades. The low turnover rate of the remaining aggrecan is an additional contributing factor, preventing protein renewal. It may be possible to retard the degenerative process by restoring the aggrecan content of the disc, or by supplementing with a bioimimetic possessing similar osmotic properties.

General significance

This review provides a basis for scientists and clinicians to understand and appreciate the central role of aggrecan in the function, degeneration and repair of the intervertebral disc.  相似文献   
38.
39.
Classical burster models are based on a fast system that either oscillates or is quiescent, depending on temporarily fixed values of slow variables. In a study of the lobster heart ganglion, we found a new type of burster for which the fast system is globally stable for all relevant fixed values of the slow variables. We describe how this burster works and speculate on its biological significance. Received: 14 July 1994 / Accepted in revised form: 25 October 1994  相似文献   
40.
An open reading frame potentially encoding a protein of 1995 amino acids (orf1995) has been found in the chloroplast genome of the green alga Chlamydomonas reinhardtii. Besides having a short hydrophobic N-terminal domain with five putative transmembrane helices, the predicted orf1995 product is highly basic. orf1995 might be a homologue of the ycf1 gene in land plants, whose function has not yet been determined. Mutants of C. reinhardtii transformed with a disruption of orf1995 remain heteroplasmic for the wild-type and disrupted alleles of this gene, indicating that the orf1995 product is essential for cell survival. Received: 18 August 1996 / Accepted: 24 September 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号